Pregunta
upstudy study bank question image url

Divide 240 g in the ratio \( 5: 3: 4 \)

Ask by Ellis Weston. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 240 g is divided into 100 g, 60 g, and 80 g in the ratio 5:3:4.

Solución

To divide 240 g in the ratio \( 5:3:4 \), we first need to determine the total number of parts in the ratio. 1. **Calculate the total parts:** \[ 5 + 3 + 4 = 12 \] 2. **Determine the value of one part:** \[ \text{Value of one part} = \frac{240 \, \text{g}}{12} = 20 \, \text{g} \] 3. **Calculate each share:** - For the first part (5 parts): \[ 5 \times 20 \, \text{g} = 100 \, \text{g} \] - For the second part (3 parts): \[ 3 \times 20 \, \text{g} = 60 \, \text{g} \] - For the third part (4 parts): \[ 4 \times 20 \, \text{g} = 80 \, \text{g} \] 4. **Final distribution:** - First share: \( 100 \, \text{g} \) - Second share: \( 60 \, \text{g} \) - Third share: \( 80 \, \text{g} \) Thus, the 240 g is divided into \( 100 \, \text{g} \), \( 60 \, \text{g} \), and \( 80 \, \text{g} \) in the ratio \( 5:3:4 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To divide 240 g in the ratio \( 5: 3: 4 \), first, add up the parts of the ratio: \( 5 + 3 + 4 = 12 \). Now, divide the total weight by the total parts: \( 240 g \div 12 = 20 g \). Next, multiply each part of the ratio by 20 g: - For 5 parts: \( 5 \times 20 g = 100 g \) - For 3 parts: \( 3 \times 20 g = 60 g \) - For 4 parts: \( 4 \times 20 g = 80 g \) So, the final division is 100 g, 60 g, and 80 g. Want to impress your friends? Next time you tackle a problem with ratios, you could try visualizing it with colored objects. For example, grab 5 red marbles, 3 blue marbles, and 4 green ones, and watch how the ratios pop visually! This not only makes it more fun but also solidifies your understanding. If you're looking for more insights into ratios, consider exploring famous mathematicians like Archimedes, who delved deeply into proportions and their applications in architecture and nature. A fascinating read on the golden ratio can reveal how it connects art and nature, proving that math is everywhere, even in the beauty of a sunflower!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad