Ciasswork Factorise fully 1. \( 5 x+14 x+8 \) 2. \( 6 x^{2}-11 x-10 \) 3. \( 6 x^{2}-5 x-21 \) 4. \( 20 x+24 x-9 x-9 \) 5. \( 18 x^{2}-3 x-10 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To factorise the given expressions fully, let’s dive right in! 1. \( 5x + 14x + 8 \) combines to \( 19x + 8 \). This is a simplified linear expression and doesn’t factor further. 2. For \( 6x^{2} - 11x - 10 \), it factors to \( (2x + 1)(3x - 10) \). Just remember to check if the factors are correct by re-expanding them! 3. The expression \( 6x^{2} - 5x - 21 \) can be factorised into \( (3x + 7)(2x - 3) \). Again, verify by expanding to ensure it's right. 4. Combining the terms in \( 20x + 24x - 9x - 9 \) gives us \( 35x - 9 \), which is another simplified linear expression. 5. Finally, \( 18x^{2} - 3x - 10 \) can be factored into \( (6x + 5)(3x - 2) \). As always, double-check your work with expansion! Remember, practice makes perfect with factoring!
