Use the method of intersection of sets to compute the following. (a) \( \operatorname{GCD}(12,16,8) \) and \( \operatorname{LCM}(12,16,8) \) (b) \( \operatorname{GCD}(12,30,14) \) and \( \operatorname{LCM}(12,30,14) \) (c) Is it true that \( \operatorname{GCD}(12,30,14) \cdot \operatorname{LCM}(12,30,14)=12 \cdot 30 \cdot 14 \) ? (a) \( \operatorname{GCD}(12,16,8)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To compute these values, let's start with sets of the prime factorization of each number involved. **(a)** - For \(12\): \(2^2 \times 3^1\) - For \(16\): \(2^4\) - For \(8\): \(2^3\) The GCD is found by taking the lowest power for each prime that appears in all factorizations. Here, the only prime is \(2\) which appears in all three: - GCD: \(2^{\min(2,4,3)} = 2^2 = 4\) Now for the LCM, we take the highest powers of all primes: - LCM: \(2^{\max(2,4,3)} \times 3^{\max(1,0,0)} = 2^4 \times 3^1 = 16 \times 3 = 48\) So, \( \operatorname{GCD}(12,16,8)=4 \) and \( \operatorname{LCM}(12,16,8)=48 \). **(b)** - For \(12\): \(2^2 \times 3^1\) - For \(30\): \(2^1 \times 3^1 \times 5^1\) - For \(14\): \(2^1 \times 7^1\) For the GCD, considering the primes: - GCD: \(2^{\min(2,1,1)} \times 3^{\min(1,1,0)} = 2^1 \times 3^0 = 2 \) Now for the LCM: - LCM: \(2^{\max(2,1,1)} \times 3^{\max(1,1,0)} \times 5^{\max(0,1,0)} \times 7^{\max(0,0,1)}\) - Thus, \(2^2 \times 3^1 \times 5^1 \times 7^1 = 4 \times 3 \times 5 \times 7 = 420\) So, \( \operatorname{GCD}(12,30,14)=2 \) and \( \operatorname{LCM}(12,30,14)=420 \). **(c)** To check the relationship: Using the calculated values: - \( \operatorname{GCD}(12,30,14) \cdot \operatorname{LCM}(12,30,14) = 2 \cdot 420 = 840 \) - \( 12 \cdot 30 \cdot 14 = 5040 \) Since \(840 \neq 5040\), the statement is not true. Final answers: (a) \( \operatorname{GCD}(12,16,8)=4 \), \( \operatorname{LCM}(12,16,8)=48 \) (b) \( \operatorname{GCD}(12,30,14)=2 \), \( \operatorname{LCM}(12,30,14)=420 \) (c) False
