Pregunta
upstudy study bank question image url

2)(C) A garden centre advertises young plants to be used as hedging. After planting, the growth \( G \) metres (ie the increase in height) after \( t \) years is modelled by the differential equation \[ \frac{d G}{d t}=\frac{25 k-G}{25} \] where \( k \) is a constant and \( G=0 \) when \( t=0 \). (a) Express \( G \) in terms of \( t \) and \( k \). (b) Given that a plant grows \( 0 \cdot 6 \) metres by the end of 5 years, find the value of (c) On the plant labels it states that the expected growth after 10 years is approximately 1 metre. Is this claim justified? (d) Given that the initial height of the plants was 0.3 m , what is the likely long-term height of the plants?

Ask by Parry Huff. in the United Kingdom
Mar 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( G(t) = 25k(1 - e^{-\frac{t}{25}}) \) (b) \( k \approx 0.132 \) (c) Yes, the claim is justified. (d) The long-term height is approximately 3.3 metres.

Solución

To solve the problem, we will follow the steps outlined in the prompt. ### Part (a): Express \( G \) in terms of \( t \) and \( k \) We start with the differential equation: \[ \frac{dG}{dt} = \frac{25k - G}{25} \] This is a first-order linear differential equation. We can rearrange it to isolate \( G \): \[ \frac{dG}{dt} + \frac{1}{25}G = k \] Next, we will use an integrating factor to solve this equation. The integrating factor \( \mu(t) \) is given by: \[ \mu(t) = e^{\int \frac{1}{25} dt} = e^{\frac{t}{25}} \] Now, we multiply the entire differential equation by the integrating factor: \[ e^{\frac{t}{25}} \frac{dG}{dt} + \frac{1}{25} e^{\frac{t}{25}} G = k e^{\frac{t}{25}} \] The left-hand side can be rewritten as the derivative of a product: \[ \frac{d}{dt} \left( e^{\frac{t}{25}} G \right) = k e^{\frac{t}{25}} \] Now, we integrate both sides with respect to \( t \): \[ e^{\frac{t}{25}} G = \int k e^{\frac{t}{25}} dt \] The integral on the right side is: \[ \int k e^{\frac{t}{25}} dt = 25k e^{\frac{t}{25}} + C \] where \( C \) is the constant of integration. Thus, we have: \[ e^{\frac{t}{25}} G = 25k e^{\frac{t}{25}} + C \] Now, we can solve for \( G \): \[ G = 25k + Ce^{-\frac{t}{25}} \] To find \( C \), we use the initial condition \( G(0) = 0 \): \[ 0 = 25k + C \implies C = -25k \] Substituting \( C \) back into the equation for \( G \): \[ G = 25k - 25k e^{-\frac{t}{25}} = 25k(1 - e^{-\frac{t}{25}}) \] Thus, the expression for \( G \) in terms of \( t \) and \( k \) is: \[ G(t) = 25k(1 - e^{-\frac{t}{25}}) \] ### Part (b): Find the value of \( k \) We are given that the plant grows \( 0.6 \) metres by the end of \( 5 \) years: \[ G(5) = 0.6 \] Substituting \( t = 5 \) into the equation for \( G \): \[ 0.6 = 25k(1 - e^{-\frac{5}{25}}) \] Calculating \( e^{-\frac{5}{25}} = e^{-0.2} \): Now we can solve for \( k \): \[ 0.6 = 25k(1 - e^{-0.2}) \] Calculating \( 1 - e^{-0.2} \): \[ 1 - e^{-0.2} \approx 1 - 0.8187 \approx 0.1813 \] Now substituting this value back into the equation: \[ 0.6 = 25k(0.1813) \] Solving for \( k \): \[ k = \frac{0.6}{25 \times 0.1813} \] Calculating this value: \[ k \approx \frac{0.6}{4.5325} \approx 0.132 \] ### Part (c): Is the claim justified? We need to check if the expected growth after \( 10 \) years is approximately \( 1 \) metre: Substituting \( t = 10 \) into the equation for \( G \): \[ G(10) = 25k(1 - e^{-\frac{10}{25}}) \] Using \( k \approx 0.132 \): Calculating \( e^{-\frac{10}{25}} = e^{-0.4} \): \[ G(10) = 25 \times 0.132(1 - e^{-0.4}) \] Calculating \( 1 - e^{-0.4} \): \[ 1 - e^{-0.4} \approx 1 - 0.6703 \approx 0.3297 \] Now substituting back: \[ G(10) \approx 25 \times 0.132 \times 0.3297 \] Calculating this value: \[ G(10) \approx 1.089 \] Since \( G(10) \approx 1.089 \) metres, the claim that the expected growth after \( 10 \) years is approximately \( 1 \) metre is justified. ### Part (d): Long-term height of the plants The long-term height of the plants can be found by taking the limit as \( t \) approaches infinity: \[ \lim_{t \to \infty} G(t) = 25k(1 - e^{-\frac{t}{25}}) \to 25k \] Substituting \( k \approx 0.132 \): \[ \text{Long-term height} = 25 \times 0.132 \approx 3.3 \text{ metres} \] Thus, the likely long-term height of the plants is approximately \( 3.3 \) metres.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The given differential equation is a classic example of a first-order linear differential equation modeling growth towards a maximum value—essentially a form of logistic growth. This type of growth is common in biological systems, reflecting how plants and other organisms grow when resources are plentiful but experience some capping effect as they approach their maximum potential size. It's fascinating to see mathematical models applied in gardening! To solve part (a), we can use integrating factors or direct integration to express \( G \) in terms of \( t \) and \( k \). It’s crucial to note that initial conditions help us find the constants of integration, connecting the abstract math to real-world scenarios like how plants respond to environmental factors over time. Understanding these models allows gardeners to predict plant behaviors effectively.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad