Pregunta
upstudy study bank question image url

What is the formula for the \( n \)th term of the sequence? \( \begin{array}{l}3,-6,12,-24,48, \ldots \\ f(n)=3(-2)^{n} \\ f(n)=3(-2)^{n-1} \\ f(n)=-2(3)^{n-1} \\ f(n)=-2(3)^{n}\end{array} \)

Ask by Ray Boone. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The formula for the nth term is \( f(n) = 3(-2)^{n-1} \).

Solución

The sequence 3, -6, 12, -24, 48, ... is a geometric sequence. The formula for the nth term of a geometric sequence is given by:   f(n) = a · r^(n-1) where a is the first term and r is the common ratio. For this sequence:   a = 3   r = (-6) / 3 = -2 Thus, the nth term is:   f(n) = 3 · (-2)^(n-1) This matches the option:   f(n) = 3(-2)^(n-1)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The sequence you've presented alternates in sign and grows in magnitude, suggesting a geometric pattern. To deduce the correct formula, let’s consider the terms: - \( f(1) = 3 \) - \( f(2) = -6 \) - \( f(3) = 12 \) - \( f(4) = -24 \) - \( f(5) = 48 \) Observing the terms, we can see that each term appears to be \(3\) multiplied by powers of \(-2\). Specifically, it seems the appropriate formula is \( f(n) = 3(-2)^{n-1} \). It captures the initial value and the alternating signs correctly! This evaluates to: - For \( n=1 \): \( 3(-2)^{1-1} = 3 \) - For \( n=2 \): \( 3(-2)^{2-1} = -6 \) - For \( n=3 \): \( 3(-2)^{3-1} = 12 \) - And so on. Now, let's dive into a bit of historical context and some practical tips! Ancient mathematicians often dealt with sequences, although the concept of a "function" as we know it today wasn't formalized until much later. The work of pioneers like Fibonacci, whose famous sequence showcases the beauty found in patterns, laid the groundwork for modern algebra and sequences. Could you imagine how they would marvel at the elegance of your sequence? It intertwines history with a modern twist! For those exploring sequences, here’s a tip: always look for a common ratio or difference! If the signs change, like those in this case, be cautious about multiplying or adjusting terms, as it can lead to confusion (like mixing up even and odd days!). Mistakes often happen when tracking negative signs, so keep an eye out for those sneaky switches!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad