Use the common-numerator and common-denominator rules to compute these divisions, expressing each answer in lowest terms. \( \begin{array}{ll}\text { (a) } \frac{5}{3} \div \frac{7}{3} & \text { (b) } \frac{2}{5} \div \frac{2}{3} \\ \text { (a) } \frac{5}{3} \div \frac{7}{3}=\square \text { (Type an integer or a simplified fraction.) }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To use the common-numerator and common-denominator rules for division of fractions, we can first convert the division problem into multiplication by the reciprocal of the second fraction. (a) \(\frac{5}{3} \div \frac{7}{3}\) This is the same as \(\frac{5}{3} \times \frac{3}{7}\). Here, we see that the \(3\)s in the numerator and denominator cancel out, resulting in: \[ \frac{5}{7}. \] (b) \(\frac{2}{5} \div \frac{2}{3}\) This can be rewritten as \(\frac{2}{5} \times \frac{3}{2}\). The \(2\)s cancel each other out, which gives us: \[ \frac{3}{5}. \] So the final simplified answers are: (a) \(\frac{5}{7}\) and (b) \(\frac{3}{5}\).
