Pregunta
upstudy study bank question image url

the AS: \( 2+9+16+\ldots . \). (to 251 Write down the fouth term of th Calculate the \( 251^{\text {st }} \) term of the s Express the series in sigma notat

Ask by Crawford Bowers. in South Africa
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- The fourth term is 23. - The 251st term is 1752. - The series in sigma notation is \( \sum_{n=1}^{251} (7n - 5) \).

Solución

To solve the problem, we need to analyze the arithmetic series given by \( 2, 9, 16, \ldots \). ### Step 1: Identify the pattern The first term \( a_1 = 2 \) and the second term \( a_2 = 9 \). The difference between the second and first term is: \[ a_2 - a_1 = 9 - 2 = 7 \] The third term \( a_3 = 16 \) gives: \[ a_3 - a_2 = 16 - 9 = 7 \] This indicates that the series has a common difference \( d = 7 \). ### Step 2: Write the general term The \( n^{\text{th}} \) term of an arithmetic series can be expressed as: \[ a_n = a_1 + (n-1) \cdot d \] Substituting the known values: \[ a_n = 2 + (n-1) \cdot 7 \] This simplifies to: \[ a_n = 2 + 7n - 7 = 7n - 5 \] ### Step 3: Find the fourth term To find the fourth term \( a_4 \): \[ a_4 = 7 \cdot 4 - 5 = 28 - 5 = 23 \] ### Step 4: Calculate the \( 251^{\text{st}} \) term To find the \( 251^{\text{st}} \) term \( a_{251} \): \[ a_{251} = 7 \cdot 251 - 5 \] Now, let's calculate \( a_{251} \): \[ a_{251} = 1757 - 5 = 1752 \] ### Step 5: Express the series in sigma notation The series can be expressed in sigma notation as: \[ \sum_{n=1}^{251} (7n - 5) \] ### Summary of Results - The fourth term of the series is \( 23 \). - The \( 251^{\text{st}} \) term of the series is \( 1752 \). - The series in sigma notation is \( \sum_{n=1}^{251} (7n - 5) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The fourth term of the arithmetic sequence (AS) is calculated by identifying the pattern. The first term \( a_1 = 2 \), and the common difference \( d = 9 - 2 = 7 \). Therefore, the fourth term \( a_4 = a_1 + 3d = 2 + 3(7) = 23 \). To find the \( 251^{\text{st}} \) term, we use the formula for the \( n^{\text{th}} \) term of an arithmetic sequence: \[ a_n = a_1 + (n-1)d \] Thus, for the 251st term: \[ a_{251} = 2 + (251-1) \times 7 = 2 + 250 \times 7 = 2 + 1750 = 1752 \] For sigma notation, the series \( 2 + 9 + 16 + \ldots \) can be expressed as: \[ \sum_{n=1}^{251} (2 + (n - 1) \times 7) \] This captures the series succinctly!

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad