Pregunta
upstudy study bank question image url

\begin{tabular}{l} Is \( \sqrt{34} \) a rational number? \\ yes no \\ \hline\end{tabular}

Ask by Chan Cummings. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

√34 is not a rational number.

Solución

To determine if √34 is a rational number, we look for integers a and b (with b ≠ 0) such that √34 = a/b. Squaring both sides gives:   34 = a²/b²  →  a² = 34b² This equation suggests that a² is divisible by 34. However, 34 is not a perfect square; its prime factors are 2 and 17. For √34 to be rational, 34 would need to be a perfect square, just like 4, 9, 16, etc. Since 34 is not a perfect square, no pair of integers (a, b) can satisfy the equation, meaning √34 cannot be written as a fraction of integers. Therefore, √34 is irrational. Answer: no.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine if \( \sqrt{34} \) is a rational number, we first need to check if it can be expressed as a fraction of two integers. Since 34 is not a perfect square (the closest integer squares are 25 and 36), \( \sqrt{34} \) cannot be expressed as a ratio of integers. Thus, it is classified as an irrational number. Fun fact: the decimal representation of \( \sqrt{34} \) is approximately 5.831, which doesn't terminate or repeat! Understanding rational and irrational numbers has real-world implications, especially in fields like engineering and architecture, where precise measurements are essential. For instance, when calculating the diagonal of a room or a piece of furniture, those using \( \sqrt{34} \) might need to round it for practical purposes, illustrating how irrational numbers play a role in everyday design and construction!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad