10. The points \( P(1,2,3) \) and \( Q(2,3,4) \) are given. Find the norm and di- rection cosines of the vector \( \overrightarrow{P Q} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the vector \( \overrightarrow{PQ} \), we can start by calculating its components using the given points \( P(1, 2, 3) \) and \( Q(2, 3, 4) \): \[ \overrightarrow{PQ} = Q - P = (2 - 1, 3 - 2, 4 - 3) = (1, 1, 1). \] Next, we determine the norm (or magnitude) of the vector \( \overrightarrow{PQ} \) using the formula: \[ \|\overrightarrow{PQ}\| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}. \] For the direction cosines \( l, m, n \) of \( \overrightarrow{PQ} \), we can use the components of the vector divided by its norm: \[ l = \frac{1}{\sqrt{3}}, \quad m = \frac{1}{\sqrt{3}}, \quad n = \frac{1}{\sqrt{3}}. \] Thus, the norm of the vector \( \overrightarrow{PQ} \) is \( \sqrt{3} \) and the direction cosines are \( \left( \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \).
