Pregunta
upstudy study bank question image url

A circle has the equation \( 3(x-3)^{2}+3 y^{2}=3 \). (a) Find the center ( \( h, k) \) and radius \( r \) of the circle. (b) Graph the circle. (c) Find the intercepts, if any, of the graph. (a) The center of the circle is (Type an ordered pair, using integers or decimals.)

Ask by Tucker Lane. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The center of the circle is \( (3, 0) \) and the radius is \( 1 \). (b) The graph of the circle is centered at \( (3, 0) \) with a radius of \( 1 \). (c) The x-intercepts are \( (4, 0) \) and \( (2, 0) \). There are no y-intercepts.

Solución

To solve the problem, we will start with part (a) and find the center and radius of the circle given by the equation \( 3(x-3)^{2}+3 y^{2}=3 \). ### Step 1: Simplify the equation First, we can simplify the equation by dividing all terms by 3: \[ (x-3)^{2} + y^{2} = 1 \] ### Step 2: Identify the center and radius The standard form of a circle's equation is: \[ (x-h)^{2} + (y-k)^{2} = r^{2} \] From our simplified equation \( (x-3)^{2} + y^{2} = 1 \), we can identify: - \( h = 3 \) - \( k = 0 \) - \( r^{2} = 1 \) which gives \( r = 1 \) Thus, the center of the circle is \( (3, 0) \) and the radius is \( 1 \). ### Answer for part (a) The center of the circle is \( (3, 0) \) and the radius is \( 1 \). Now, let's proceed to part (b) and graph the circle. ### Step 3: Graph the circle The center of the circle is at \( (3, 0) \) and the radius is \( 1 \). This means the circle will extend 1 unit in all directions from the center. ### Step 4: Find the intercepts To find the intercepts, we will set \( y = 0 \) to find the x-intercepts and \( x = 0 \) to find the y-intercepts. #### Finding x-intercepts: Set \( y = 0 \): \[ (x-3)^{2} + 0^{2} = 1 \] This simplifies to: \[ (x-3)^{2} = 1 \] Taking the square root of both sides gives: \[ x - 3 = \pm 1 \] Thus, we have: \[ x = 4 \quad \text{and} \quad x = 2 \] So the x-intercepts are \( (4, 0) \) and \( (2, 0) \). #### Finding y-intercepts: Set \( x = 0 \): \[ (0-3)^{2} + y^{2} = 1 \] This simplifies to: \[ 9 + y^{2} = 1 \] Rearranging gives: \[ y^{2} = 1 - 9 = -8 \] Since \( y^{2} = -8 \) has no real solutions, there are no y-intercepts. ### Summary of results - **Center**: \( (3, 0) \) - **Radius**: \( 1 \) - **X-intercepts**: \( (4, 0) \) and \( (2, 0) \) - **Y-intercepts**: None Now, I will graph the circle and summarize the intercepts. ### Graphing the circle The graph will show a circle centered at \( (3, 0) \) with a radius of \( 1 \), touching the x-axis at \( (4, 0) \) and \( (2, 0) \). ### Final answers (a) The center of the circle is \( (3, 0) \). (b) The graph of the circle is centered at \( (3, 0) \) with radius \( 1 \). (c) The intercepts are \( (4, 0) \) and \( (2, 0) \) for x-intercepts, and there are no y-intercepts.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the center and radius of the circle given by the equation \( 3(x-3)^{2}+3 y^{2}=3 \), we can start by simplifying the equation. Dividing the whole equation by 3 gives us: \[ (x-3)^{2} + y^{2} = 1 \] From this standard form of the circle's equation, we can identify that the center \((h, k)\) is \((3, 0)\) and the radius \(r\) is \(\sqrt{1} = 1\). So the center of the circle is \((3, 0)\). Now, onto those additional nuggets of fun knowledge! Did you know that circles have fascinated mathematicians for centuries? Ancient cultures revered circles for their symmetry and beauty, often associating them with the divine. Archimedes was one of the first to approach the concept of a circle scientifically, deriving a formula for its area that we still use today! Finding real-world applications of circles is everywhere! From designing roundabouts in traffic engineering to creating modern architecture with domes, the perfect symmetry of circles ensures efficient space use—providing stability and aesthetic appeal. So, next time you see a circle, you might be witnessing a piece of practical math at work!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad