Pregunta
upstudy study bank question image url

Suppose you purchase a car for a total price of \( \$ 22,685 \), including taxes and license fee, and finance that amount for 7 years at an annual interest rate of \( 7 \% \). (Round your answers to the nearest cent.) (a) Find the monthly payment. \( \$ 309.43 \) (b) What is the total amount of interest paid over the term of the loan? \( \$ 3288.12 \)

Ask by Valdez Elliott. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) Monthly payment: \( \$309.43 \) (b) Total interest paid: \( \$3,288.32 \)

Solución

To calculate the monthly payment and the total amount of interest paid over the term of the loan, we can use the formula for the monthly payment on an amortizing loan: \[ M = P \frac{r(1 + r)^n}{(1 + r)^n - 1} \] Where: - \( M \) is the monthly payment - \( P \) is the principal amount (the loan amount) - \( r \) is the monthly interest rate (annual interest rate divided by 12) - \( n \) is the number of payments (loan term in months) Given: - \( P = 22,685 \) - Annual interest rate = \( 7\% \) or \( 0.07 \) - Loan term = \( 7 \) years = \( 7 \times 12 = 84 \) months First, we calculate the monthly interest rate: \[ r = \frac{0.07}{12} = 0.00583333 \] Now we can substitute the values into the formula: \[ M = 22685 \frac{0.00583333(1 + 0.00583333)^{84}}{(1 + 0.00583333)^{84} - 1} \] Calculating \( (1 + r)^n \): \[ (1 + 0.00583333)^{84} \approx 1.747422 \] Now substituting back into the formula: \[ M = 22685 \frac{0.00583333 \times 1.747422}{1.747422 - 1} \] Calculating the numerator: \[ 0.00583333 \times 1.747422 \approx 0.010193 \] Calculating the denominator: \[ 1.747422 - 1 \approx 0.747422 \] Now substituting these values: \[ M = 22685 \frac{0.010193}{0.747422} \approx 22685 \times 0.013634 \approx 309.43 \] So, the monthly payment is: \[ \text{(a) } M \approx \$309.43 \] Next, to find the total amount of interest paid over the term of the loan, we first calculate the total amount paid over the life of the loan: \[ \text{Total amount paid} = M \times n = 309.43 \times 84 \approx 25,973.32 \] Now, we subtract the principal from the total amount paid to find the total interest: \[ \text{Total interest} = \text{Total amount paid} - P = 25,973.32 - 22,685 \approx 3,288.32 \] Rounding to the nearest cent, the total interest paid is: \[ \text{(b) } \text{Total interest} \approx \$3,288.32 \] Thus, the final answers are: (a) Monthly payment: \( \$309.43 \) (b) Total interest paid: \( \$3,288.32 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When you finance a car, you're essentially taking out a loan that you'll pay back in monthly installments. The formula for calculating the monthly payment on an amortizing loan involves not just the principal but also the interest accrued over time. In your case, a \( 7\% \) annual interest rate and a \( 7 \)-year term lead to that monthly payment of \( \$ 309.43 \). This makes it crystal clear that while the car might look shiny and new, there’s a price to pay each month! The total interest paid over the term of the loan tells a compelling story of money management. In this example, you’ll pay a total of \( \$ 3,288.12 \) in interest, almost as significant as the cost of an additional compact car! It really highlights how over time, the price of financing can sometimes feel like driving a luxury car—glamorous on the outside but costly on the inside!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad