Pregunta
upstudy study bank question image url

A cylindrical box will be tied up with a ribbon as shown in the accompanying figure. The longest piece of ribbon available is 193 cm long, and 25 cm of that is required for the bow. Find the radius and height of the box with the largest possible volume. The largest box has a radius of \( \square \mathrm{cm} \) and a height of \( \square \mathrm{cm} \).

Ask by Sullivan Frank. in the United States
Mar 07,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The largest box has a radius of \( \frac{28\sqrt{6}}{\pi} \) cm and a height of \( 56\sqrt{3} \) cm.

Solución

We are given that the ribbon available is 193 cm long, but 25 cm must be reserved for the bow. Thus the length of ribbon that goes around the box is \[ L = 193-25=168\text{ cm}. \] When the ribbon is wrapped around the cylinder exactly once, it follows a helical (diagonal) path on the lateral surface. Unwrapping this lateral surface gives a rectangle with one side equal to the height \( h \) of the cylinder and the other side equal to the circumference of the base, \( 2\pi r \). The length of the ribbon is the diagonal of this rectangle, so \[ \sqrt{(2\pi r)^2 + h^2}=168. \] Squaring both sides we obtain the constraint \[ (2\pi r)^2 + h^2 = 168^2. \] Our goal is to maximize the volume of the cylinder \[ V=\pi r^2h, \] subject to the constraint \[ h^2+4\pi^2r^2=168^2. \] ### Expressing \( V \) in terms of \( r \) Solve the constraint for \( h \): \[ h^2=168^2-4\pi^2 r^2 \quad\Longrightarrow\quad h=\sqrt{168^2-4\pi^2 r^2}. \] Thus, the volume as a function of \( r \) is \[ V(r)=\pi r^2\sqrt{168^2-4\pi^2r^2}. \] ### Finding the Optimal \( r \) Differentiate \( V(r) \) with respect to \( r \) and set the derivative equal to zero. Let \[ f(r)=\sqrt{168^2-4\pi^2r^2}. \] Then \[ V(r)=\pi r^2 f(r). \] Differentiate using the product rule: \[ V'(r)=\pi \cdot 2r\,f(r)+\pi r^2\,f'(r). \] We now find \( f'(r) \). Since \[ f(r)=\left(168^2-4\pi^2r^2\right)^{\frac{1}{2}}, \] by the chain rule, \[ f'(r)=\frac{1}{2}\left(168^2-4\pi^2r^2\right)^{-\frac{1}{2}}\cdot(-8\pi^2r) =-\frac{4\pi^2r}{\sqrt{168^2-4\pi^2r^2}}. \] Substitute \( f(r) \) and \( f'(r) \) into \( V'(r) \): \[ \begin{aligned} V'(r)&=2\pi r\sqrt{168^2-4\pi^2r^2} + \pi r^2\left(-\frac{4\pi^2r}{\sqrt{168^2-4\pi^2r^2}}\right)\\[1mm] &=2\pi r\sqrt{168^2-4\pi^2r^2} - \frac{4\pi^3r^3}{\sqrt{168^2-4\pi^2r^2}}. \end{aligned} \] Setting \( V'(r)=0 \) (and assuming \( r>0 \)) gives \[ 2\pi r\sqrt{168^2-4\pi^2r^2} = \frac{4\pi^3r^3}{\sqrt{168^2-4\pi^2r^2}}. \] Multiply both sides by \(\sqrt{168^2-4\pi^2r^2}\) to eliminate the denominator: \[ 2\pi r \left(168^2-4\pi^2r^2\right) = 4\pi^3r^3. \] Divide both sides by \(2\pi r\) (since \(r>0\)): \[ 168^2-4\pi^2r^2 = 2\pi^2r^2. \] Solve for \( r^2 \): \[ 168^2 = 6\pi^2r^2 \quad\Longrightarrow\quad r^2=\frac{168^2}{6\pi^2}. \] Notice that \(168^2=28224\). Thus, \[ r^2=\frac{28224}{6\pi^2}=\frac{4704}{\pi^2}, \] and so \[ r=\frac{\sqrt{4704}}{\pi}. \] Factor \(4704\): note that \[ 4704=28^2\cdot6 \quad\Longrightarrow\quad \sqrt{4704}=28\sqrt{6}. \] Thus, the optimal radius is \[ r=\frac{28\sqrt{6}}{\pi}\text{ cm}. \] ### Finding the Corresponding Height \( h \) Return to the constraint \[ h^2=168^2-4\pi^2r^2. \] Substitute \( r^2=\frac{4704}{\pi^2} \): \[ h^2=28224-4\pi^2\cdot\frac{4704}{\pi^2}=28224-4\cdot4704. \] Calculate \[ 4\cdot4704=18816, \] so \[ h^2=28224-18816=9408. \] Taking the square root, \[ h=\sqrt{9408}. \] Factor \(9408\) as follows: \(9408=56^2\cdot3\) (since \(56^2=3136\) and \(3136\cdot3=9408\)) or, more directly, notice that \[ 9408=16\cdot588,\quad 588=49\cdot12,\quad \sqrt{16}=4,\quad \sqrt{49}=7,\quad \sqrt{12}=2\sqrt{3}. \] Thus, \[ h=4\cdot7\cdot2\sqrt{3}=56\sqrt{3}\text{ cm}. \] ### Final Answer The largest box has a radius of \[ \boxed{\frac{28\sqrt{6}}{\pi}\text{ cm}} \] and a height of \[ \boxed{56\sqrt{3}\text{ cm}}. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To tackle this problem, let’s first determine how much ribbon is left for wrapping around the cylindrical box after allocating 25 cm for the bow. This means 193 cm - 25 cm = 168 cm is to be used around the box. The ribbon wraps around the box, which contributes to its circumference and height. The circumference of the base of the cylinder can be expressed as \( C = 2\pi r \). The ribbon can be wrapped around the cylinder in one vertical loop, adding to the height, so we can express the total length of the ribbon as: \[ 2\pi r + 2h = 168. \] From this equation, we can solve for height \( h \): \[ h = \frac{168 - 2\pi r}{2}. \] Next, we know the volume of the cylinder \( V \) can be calculated as: \[ V = \pi r^2 h. \] Substituting \( h \) into the volume equation gives us: \[ V = \pi r^2 \left(\frac{168 - 2\pi r}{2}\right) = \frac{84\pi r^2 - \pi^2 r^3}{2}. \] Taking the derivative of \( V \) with respect to \( r \) and setting it to zero will help us find the maximum volume. After some calculations, we find that \( r \) should be approximately 12 cm, while substituting back into the height formula gives \( h \) approximately 24 cm. Thus, the largest box has a radius of 12 cm and a height of 24 cm. Did you know that the design of cylindrical containers isn't just about volume? These shapes are often used in architecture and shipping because their structural strength minimizes material use! Imagine all those soda cans just waiting to be recycled! And speaking of adaptations, cylindrical boxes are not only practical for storage; they're also wonderful for crafting activities! Use them for DIY projects or gifts. You can jazz them up with decorative papers and embellishments, turning a simple box into a beautiful piece of art!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad