Pregunta
Find the slope of the line that goes through the points \( (4,-6) \) and \( (15,-7) \). Slope, \( m=\square \) Enter your answer as an integer or a reduced fraction in the form A/B Submit Question
Ask by Mcfarlane Gross. in the United States
Feb 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The slope is \(-\frac{1}{11}\).
Solución
To find the slope of the line that goes through the points (4, -6) and (15, -7), use the slope formula:
m = (y₂ - y₁) / (x₂ - x₁)
Substitute the coordinates of the given points:
m = (-7 - (-6)) / (15 - 4)
= (-7 + 6) / (11)
= (-1) / 11
So, the slope is -1/11.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the slope of the line that passes through the points \( (4, -6) \) and \( (15, -7) \), we use the slope formula: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] In this case, \( (x_1, y_1) = (4, -6) \) and \( (x_2, y_2) = (15, -7) \). Plugging in the values, we have: \[ m = \frac{-7 - (-6)}{15 - 4} = \frac{-7 + 6}{11} = \frac{-1}{11} \] So the slope \( m = -\frac{1}{11} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium