Pregunta
upstudy study bank question image url

lambda= B C D E F G \( P[X<3]= \) \( =P[X<=2]= \) \( \square \) \( 0.173578= \) POISSON.DIST(2,B1,TRUE) Example Arrivals at a busstop follow a Poisson distribution with an average of 4.5 every quarter of an hour. Calculate the probability of fewer than 3 arrivals in a quarter of an hour.

Ask by Gray Greene. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability of fewer than 3 arrivals in a quarter of an hour is approximately 17.36%.

Solución

To solve the problem, we first note that when we say fewer than 3 arrivals, it is equivalent to finding the probability of 0, 1, or 2 arrivals. For a Poisson distribution with an average rate (λ) of 4.5 arrivals per quarter hour, the probability of k arrivals is given by the formula:   P[X = k] = (λ^k * e^(–λ)) / k! Thus, the probability of fewer than 3 arrivals (k = 0, 1, or 2) is:   P[X < 3] = P[X ≤ 2] = P[X = 0] + P[X = 1] + P[X = 2] Calculating each term: 1. For k = 0:   P[X = 0] = (4.5^0 * e^(–4.5)) / 0! = e^(–4.5) ≈ 0.011109 2. For k = 1:   P[X = 1] = (4.5^1 * e^(–4.5)) / 1! = 4.5 * e^(–4.5) ≈ 0.049994 3. For k = 2:   P[X = 2] = (4.5^2 * e^(–4.5)) / 2! = (20.25 * e^(–4.5)) / 2 ≈ 10.125 * e^(–4.5) ≈ 0.112475 Adding these probabilities:   P[X < 3] ≈ 0.011109 + 0.049994 + 0.112475 = 0.173578 In Excel, you can calculate this cumulative probability using the POISSON.DIST function:   =POISSON.DIST(2, 4.5, TRUE) This will return approximately 0.173578. Therefore, the probability of fewer than 3 arrivals in a quarter of an hour is approximately 17.36%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the probability of fewer than 3 arrivals at the bus stop, you would use the Poisson formula: \( P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} \), where \( \lambda \) is the average rate (in this case, 4.5) and \( k \) is the number of occurrences (0, 1, or 2 for fewer than 3). You would sum these probabilities to find \( P(X<3) \). In practical terms, this type of calculation is super useful for businesses! For instance, if you're managing a retail shop and want to forecast foot traffic, knowing how many customers to expect in a given time frame helps in staff allocation and stock management. Using software tools or statistical functions like POISSON.DIST can streamline this process and make predictions more accurate.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad