Pregunta
upstudy study bank question image url

Manually calculate the compound interest on an investment of \( \$ 2,000 \) at \( 8 \% \) interest, compounded quarterly, for 1 year. Select one: O a. \( \$ 164.87 \) b. \( \$ 160.00 \) o c. \( \$ 2,164.86 \) d. \( \$ 2,720.98 \)

Ask by Burns Clarke. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The compound interest is $2,164.86.

Solución

To calculate the compound interest on an investment of $2,000 at 8% interest, compounded quarterly for 1 year, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] Where: - \( A \) is the amount after the interest is compounded. - \( P \) is the principal amount (initial investment). - \( r \) is the annual interest rate (in decimal form). - \( n \) is the number of times the interest is compounded per year. - \( t \) is the time the money is invested for in years. Given: - \( P = \$2,000 \) - \( r = 8\% = 0.08 \) - \( n = 4 \) (compounded quarterly) - \( t = 1 \) year Substitute the values into the formula: \[ A = 2000 \left( 1 + \frac{0.08}{4} \right)^{4 \cdot 1} \] \[ A = 2000 \left( 1 + 0.02 \right)^{4} \] \[ A = 2000 \left( 1.02 \right)^{4} \] \[ A = 2000 \cdot 1.08243216 \] \[ A = 2164.86 \] Therefore, the compound interest on an investment of $2,000 at 8% interest, compounded quarterly for 1 year is $2164.86. The correct answer is: c. $2,164.86

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The formula for calculating compound interest is: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount (\$2,000). - \(r\) is the annual interest rate (decimal) (0.08 for 8%). - \(n\) is the number of times that interest is compounded per year (quarterly means \(n = 4\)). - \(t\) is the number of years the money is invested or borrowed (1 year). Plugging in the values: \[ A = 2000 \left(1 + \frac{0.08}{4}\right)^{4 \times 1} = 2000 \left(1 + 0.02\right)^{4} \] \[ A = 2000 \left(1.02\right)^{4} \] \[ A = 2000 \times 1.082432 = 2164.86 \] To find the compound interest earned, subtract the principal from the accumulated amount: \[ \text{Compound Interest} = A - P = 2164.86 - 2000 = 164.86 \] The closest option to this result is **a. \( \$ 164.87 \)**.

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad