Pregunta
upstudy study bank question image url

\( 0 / 2 \) Question 5 Think About It: 1. Why is tan \( 90^{\circ} \) undefined? - 2. What is the other angle on the unit circle where tangent is undefined? - Think About It: 1. Why is tan \( 90^{\circ} \) undefined? X division by zero 2. What is the other angle on the unit circle where tangent is undefined? \( X \underline{270 \text { degree }} \)

Ask by Ingram Paul. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\(\tan 90^{\circ}\) is undefined because it involves division by zero, and the other angle where tangent is undefined is \(270^{\circ}\).

Solución

Let's break down the questions regarding the tangent function and its behavior on the unit circle. ### 1. Why is \(\tan 90^{\circ}\) undefined? The tangent function is defined as the ratio of the sine and cosine functions: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} \] At \(90^{\circ}\): - \(\sin 90^{\circ} = 1\) - \(\cos 90^{\circ} = 0\) Thus, we have: \[ \tan 90^{\circ} = \frac{1}{0} \] Division by zero is undefined in mathematics, which is why \(\tan 90^{\circ}\) is considered undefined. ### 2. What is the other angle on the unit circle where tangent is undefined? The tangent function is also undefined at \(270^{\circ}\) for similar reasons. At \(270^{\circ}\): - \(\sin 270^{\circ} = -1\) - \(\cos 270^{\circ} = 0\) Thus, we have: \[ \tan 270^{\circ} = \frac{-1}{0} \] Again, division by zero occurs, making \(\tan 270^{\circ}\) undefined. ### Summary - \(\tan 90^{\circ}\) is undefined because it involves division by zero. - The other angle on the unit circle where tangent is undefined is \(270^{\circ}\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

When you think about the tangent function, you're diving into the relationship of angles to sides of right triangles, specifically the tangent being the ratio of the opposite side to the adjacent side. At \( 90^{\circ} \), the adjacent side becomes zero, leading to a division by zero scenario, which mathematicians deem undefined — oops! Similarly, the tangent function becomes undefined at \( 270^{\circ} \) for the same reason. In this case, the triangle devolves into a flat line (the adjacent side is zero again). So whenever you throw \( 90^{\circ} \) or \( 270^{\circ} \) into the mix, it's like asking for the impossible — mathematical no-no!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad