Pregunta
upstudy study bank question image url

6:47 PM
Mon 17 Mar
98%
mylab.pearson.com
Kurulus Osm…
Can’t Open P…
CUNY Login
The Evolutio…
Discord
Do Homewor…
MAT 220-S25
Rasheed Larry
03/17/25 6:47 PM
Homework:
Trigonometric
Question 4, 8.4.35
HW Score: 33.33%, 3
Substitutions
of 9 points

Points: 0 of 1
Save
Question list
Question 1
Question 2
Question 3
Question 4
Question 5
Question 6
Question 7
Question 8
Question 9
Use an appropriate substitution and then a trigonometric substitution to evaluate the integral.
(Type an exact answer, using radicals as needed.)

Ask by Bernard Hall. in the United States
Mar 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Solución

To evaluate the integral
we will use a substitution followed by a trigonometric substitution. Let’s break this down step by step.

Step 1: Substitution

Let . Then, the differential or . The limits of integration change as follows:
  • When , .
  • When , .
Now, we can rewrite the integral in terms of :

Step 2: Trigonometric Substitution

Next, we will use the trigonometric substitution . Then, and the expression under the square root becomes:
Now, substituting these into the integral gives:

Step 3: Evaluate the Integral

The integral of is:

Step 4: Change Back to

Now we need to change back to . Recall that:
Thus,

Step 5: Substitute Back into the Integral

Now we can write the integral as:

Step 6: Evaluate the Limits

Now we evaluate at the limits:
  1. For :
  1. For :
Now substituting these back into the logarithm:
Using properties of logarithms:

Final Answer

Thus, the final answer for the integral is:

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Did you know that trigonometric substitution is a technique that can significantly simplify integrals involving square roots? By converting complex algebraic expressions into trigonometric identities, you often find that otherwise tough problems become much easier to solve. Have fun exploring how substitutions like can help transform your integral into a more manageable form!
When tackling integrals, it’s common to overlook potential simplifications through substitution. A popular mistake is to jump in with a trigonometric identity before doing a straightforward substitution. Remember to first simplify the expression under the square root by substituting to convert your integral into a more familiar form. This will guide you to the answer while avoiding unnecessary complications!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad