c) \( \frac{\frac{2 m}{m-2}-\frac{m}{m+3}}{\frac{m+8}{m^{2}+m-6}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Let’s simplify the expression step by step! First, we start with the fraction: \[ \frac{\frac{2m}{m-2}-\frac{m}{m+3}}{\frac{m+8}{m^2+m-6}}. \] To simplify the numerator \( \frac{2m}{m-2} - \frac{m}{m+3} \), we need to find a common denominator, which is \( (m-2)(m+3) \). Rewriting the fractions with the common denominator: \[ \frac{2m(m+3) - m(m-2)}{(m-2)(m+3)}. \] Now, simplifying the numerator: \[ 2m^2 + 6m - (m^2 - 2m) = 2m^2 + 6m - m^2 + 2m = m^2 + 8m. \] Thus, the numerator becomes: \[ \frac{m^2 + 8m}{(m-2)(m+3)}. \] Now, let’s simplify the overall expression: \[ \frac{\frac{m^2 + 8m}{(m-2)(m+3)}}{\frac{m+8}{m^2+m-6}}. \] This is the same as multiplying by the reciprocal of the denominator: \[ \frac{m^2 + 8m}{(m-2)(m+3)} \cdot \frac{m^2+m-6}{m+8}. \] Next, we factor \( m^2 + m - 6 \), which factors to \( (m-2)(m+3) \): \[ = \frac{(m^2 + 8m)(m-2)(m+3)}{(m-2)(m+3)(m+8)}. \] The \( (m-2)(m+3) \) terms in the numerator and the denominator cancel out: \[ = \frac{m^2 + 8m}{m + 8}. \] Now we can factor the numerator. We can factor out an \( m \): \[ = \frac{m(m + 8)}{m + 8}. \] Provided \( m + 8 \neq 0 \) (so the cancellation is valid), we find: \[ = m. \] Finally, the simplified form of the original expression is: \[ \boxed{m}, \text{ provided } m \neq -8, m \neq 2, m \neq -3. \]
