Find \( \partial w / \partial s \) and \( \partial w / \partial t \) by using the appropriate Chain Rule. \[ w=x \cos (y z), x=s^{2}, y=t^{2}, z=s-2 t \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find \( \frac{\partial w}{\partial s} \) and \( \frac{\partial w}{\partial t} \) using the Chain Rule, we first recognize that \( w \) is a function of \( x, y, z \), and \( x, y, z \) are in turn functions of \( s \) and \( t \). Starting with the given functions: - \( w = x \cos(yz) \) - \( x = s^2 \) - \( y = t^2 \) - \( z = s - 2t \) 1. **Finding \( \frac{\partial w}{\partial s} \)**: Using the Chain Rule: \[ \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s} \] First, we compute the partial derivatives: - \( \frac{\partial x}{\partial s} = 2s \) - \( \frac{\partial y}{\partial s} = 0 \) (since \( y \) does not depend on \( s \)) - \( \frac{\partial z}{\partial s} = 1 \) Now, we need \( \frac{\partial w}{\partial x} \), \( \frac{\partial w}{\partial y} \), and \( \frac{\partial w}{\partial z} \): - \( \frac{\partial w}{\partial x} = \cos(yz) \) - \( \frac{\partial w}{\partial y} = -x z \sin(yz) \) - \( \frac{\partial w}{\partial z} = -y x \sin(yz) \) Plugging these in: \[ \frac{\partial w}{\partial s} = \cos(yz) \cdot (2s) + 0 + (-y x \sin(yz)) \cdot (1) \] \[ = 2s \cos(yz) - y x \sin(yz) \] 2. **Finding \( \frac{\partial w}{\partial t} \)**: Again using the Chain Rule: \[ \frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial t} \] Compute the relevant partial derivatives: - \( \frac{\partial x}{\partial t} = 0 \) (since \( x \) does not depend on \( t \)) - \( \frac{\partial y}{\partial t} = 2t \) - \( \frac{\partial z}{\partial t} = -2 \) Now substituting into the Chain Rule: \[ \frac{\partial w}{\partial t} = 0 + \frac{\partial w}{\partial y} \cdot (2t) + \frac{\partial w}{\partial z} \cdot (-2) \] \[ = (2t)(-xy \sin(yz)) + (-2)(-y x \sin(yz)) \] \[ = -2txy \sin(yz) + 2y x \sin(yz) = 2y x \sin(yz)(1 - t) \] Final results: \[ \frac{\partial w}{\partial s} = 2s \cos(yz) - y x \sin(yz) \] \[ \frac{\partial w}{\partial t} = 2yx \sin(yz)(1 - t) \]
