Pregunta
upstudy study bank question image url

1. If the equation formed by decreasing each root of \( a x^{2}+b x+c=0 \) by ' 1 ' is \( 2 x^{2}+8 x+2=0 \), the values of \( \frac{a}{b} \) and \( \frac{b}{c} \).

Ask by Nichols Boone. in India
Jan 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \frac{a}{b} = \frac{1}{2} \quad \text{and} \quad \frac{b}{c} = -1 \]

Solución

To solve the problem, let's follow these steps: 1. **Understand the Transformation of Roots:** - The quadratic equation \( a x^{2} + b x + c = 0 \) has roots \( r_1 \) and \( r_2 \). - Decreasing each root by 1 gives new roots \( r_1 - 1 \) and \( r_2 - 1 \). - The new quadratic equation with these roots is \( 2 x^{2} + 8 x + 2 = 0 \). 2. **Formulate the New Equation:** - To find the new equation when each root is decreased by 1, substitute \( x = y + 1 \) in the original equation. - This substitution transforms the original equation \( a x^{2} + b x + c = 0 \) into: \[ a (y + 1)^2 + b (y + 1) + c = 0 \] - Expanding this, we get: \[ a y^2 + (2a + b) y + (a + b + c) = 0 \] - This must equal the new equation \( 2 y^{2} + 8 y + 2 = 0 \). Therefore, we equate the coefficients: \[ \begin{cases} a = 2 \\ 2a + b = 8 \\ a + b + c = 2 \end{cases} \] 3. **Solve for the Coefficients:** - From the first equation: \( a = 2 \). - Substitute \( a = 2 \) into the second equation: \[ 2(2) + b = 8 \Rightarrow 4 + b = 8 \Rightarrow b = 4 \] - Substitute \( a = 2 \) and \( b = 4 \) into the third equation: \[ 2 + 4 + c = 2 \Rightarrow c = -4 \] 4. **Calculate the Required Ratios:** - \( \frac{a}{b} = \frac{2}{4} = \frac{1}{2} \) - \( \frac{b}{c} = \frac{4}{-4} = -1 \) **Final Answer:** \[ \frac{a}{b} = \frac{1}{2} \quad \text{and} \quad \frac{b}{c} = -1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this problem, let's denote the roots of the original quadratic equation \( ax^2 + bx + c = 0 \) as \( r_1 \) and \( r_2 \). According to the problem, the new roots after decreasing each root by 1 are \( r_1 - 1 \) and \( r_2 - 1 \). Given that these new roots correspond to the quadratic equation \( 2x^2 + 8x + 2 = 0 \), we can find the sum and product of the roots from this equation. From Vieta's formulas, we know: - The sum of the new roots \( (r_1 - 1) + (r_2 - 1) = -\frac{b}{a} - 2 \) - The product of the new roots \( (r_1 - 1)(r_2 - 1) = \frac{c}{a} - \frac{b}{a} + 1 \) For the equation \( 2x^2 + 8x + 2 = 0 \): - The sum of the roots \( -(8/2) = -4 \) - The product of the roots \( 2/2 = 1 \) From the sum of the new roots, we set up the equation: \[ r_1 + r_2 - 2 = -4 \implies r_1 + r_2 = -2 \] From the product of the new roots, we have: \[ (r_1 - 1)(r_2 - 1) = r_1r_2 - (r_1 + r_2) + 1 = 1 \] Substituting \( r_1 + r_2 = -2 \) into the product equation gives: \[ r_1r_2 + 2 + 1 = 1 \implies r_1r_2 = -2 \] Now, we apply Vieta's relationships back: For the original equation \( ax^2 + bx + c = 0 \): 1. \( r_1 + r_2 = -\frac{b}{a} \) 2. \( r_1r_2 = \frac{c}{a} \) We already have \( r_1 + r_2 = -2 \) and \( r_1r_2 = -2 \): Thus, \(-\frac{b}{a} = -2 \implies \frac{b}{a} = 2\) which gives us \(\frac{a}{b} = \frac{1}{2}\). Additionally, we have: \(\frac{c}{a} = -2 \implies \frac{b}{c} = \frac{b/a}{c/a} = \frac{2}{-2} = -1\). In conclusion: \[ \frac{a}{b} = \frac{1}{2}, \quad \frac{b}{c} = -1. \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad