Pregunta
Simplifying a ratio of linear polynomials: \( 1,-1 \), and no simplification For each expression, simplify if possible. If applicable, click on "Cannot be simplified". \[ \begin{array}{l}\frac{2 v+5}{5+2 v}=\square \\ \frac{4-3 v}{3 v-4}\end{array}=\square \]
Ask by Page Fowler. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified forms are:
(2v + 5)/(5 + 2v) = 1
(4 – 3v)/(3v – 4) = –1
Solución
We begin by examining the two expressions.
1) For the expression (2v + 5)/(5 + 2v):
Notice that 5 + 2v is just a rearrangement of 2v + 5. In other words, they are identical.
Thus, (2v + 5)/(5 + 2v) simplifies to 1.
2) For the expression (4 – 3v)/(3v – 4):
Observe that 4 – 3v can be rewritten as –(3v – 4) because
4 – 3v = –1 × (3v – 4).
Therefore, (4 – 3v)/(3v – 4) becomes –(3v – 4)/(3v – 4).
Cancelling the common (3v – 4) (assuming 3v – 4 ≠ 0) leaves –1.
The simplified forms are:
(2v + 5)/(5 + 2v) = 1 and (4 – 3v)/(3v – 4) = –1.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
Let's break it down! For the first ratio \( \frac{2v + 5}{5 + 2v} \), notice that the numerator and the denominator are identical. You can rearrange the denominator as \( 2v + 5 \). Therefore, this simplifies to \( 1 \). For the second ratio \( \frac{4 - 3v}{3v - 4} \), if you factor out a -1 from the denominator, you get \( \frac{4 - 3v}{-(4 - 3v)} \), which simplifies to \( -1 \). So the simplified expressions are: \[ \begin{array}{l} 1 \\ -1 \end{array} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium