Pregunta
upstudy study bank question image url

(d) Leonard travels a distance of 240 km to visit his parents. He calculates that, if he increases his average speed by \( 20 \mathrm{~km} / \mathrm{h} \), the journey will take him 2 hours less. Determine his original speed.

Ask by Ryan Norris. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Leonard's original speed is 40 km/h.

Solución

Let Leonard’s original speed be v km/h. The time taken at his original speed is 240/v hours, and if he increases his speed by 20 km/h (to v + 20 km/h), the time taken becomes 240/(v + 20) hours. According to the problem, the journey time is reduced by 2 hours when the speed is increased. This gives us the equation:   240/v – 240/(v + 20) = 2 Multiply through by v(v + 20) to eliminate the fractions:   240(v + 20) – 240v = 2v(v + 20) Simplify the left-hand side:   240v + 4800 – 240v = 4800 So the equation becomes:   4800 = 2v² + 40v Divide the whole equation by 2:   2400 = v² + 20v Rearrange into standard quadratic form:   v² + 20v – 2400 = 0 Next, use the quadratic formula:   v = (–b ± √(b² – 4ac)) / (2a), where a = 1, b = 20, and c = –2400. Compute the discriminant:   Δ = 20² – 4(1)(–2400) = 400 + 9600 = 10000 Taking the square root:   √Δ = 100 Now, the solutions for v are:   v = (–20 ± 100) / 2 We discard the negative root, so:   v = (–20 + 100) / 2 = 80 / 2 = 40 Thus, Leonard's original speed is 40 km/h.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve this delightful little puzzle, let’s declare Leonard’s original speed as \( x \) km/h. It takes him \( \frac{240}{x} \) hours to travel the distance of 240 km. If he speeds up by 20 km/h, his new speed is \( x + 20 \) km/h, and the time taken is \( \frac{240}{x + 20} \) hours. According to the problem, this new journey takes him 2 hours less: \[ \frac{240}{x} - \frac{240}{x + 20} = 2 \] Now, by multiplying through by \( x(x + 20) \) to eliminate the denominators and simplifying, you’ll find that \( x \) is 40 km/h! What’s fascinating is how simple equations can unleash your inner detective to find the speed. When you visualize Leonard zooming down the road, that extra 20 km/h makes a significant difference—turning a four-hour drive into just two hours! If he’d only taken this shortcut in life!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad