Pregunta
upstudy study bank question image url

Suppose experimental data are represented by a set of points in the plane. An interpolating polynomial for the data is a polynomial whose graph passes through every point. In scientific work, such a polynomial can be used, for example, to estimate values between the known data points. Another use is to create curves for graphical images on a computer screen. One method for finding an interpolating polynomial is to solve a system of linear equations. Find the interpolating polynomial \( p(t)=a_{0}+a_{1} t+a_{2} t^{2} \) for the data \( (1,11),(2,19),(3,23) \). That is, find \( a_{0}, a_{1} \), and \( a_{2} \) such that the following is true. \[ \begin{array}{l} a_{0}+a_{1}(1)+a_{2}(1)^{2}=11 \\ a_{0}+a_{1}(2)+a_{2}(2)^{2}=19 \\ a_{0}+a_{1}(3)+a_{2}(3)^{2}=23 \end{array} \] Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The interpolating polynomial is \( p(t)= \) \( \square \) . B. There are infinitely many possible interpolating polynomials. C. There does not exist an interpolating polynomial for the given data.

Ask by Chandler Huang. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The interpolating polynomial is \( p(t) = -1 + 14t - 2t^{2} \).

Solución

To find the interpolating polynomial \( p(t) = a_{0} + a_{1}t + a_{2}t^{2} \) for the given data points \((1,11)\), \((2,19)\), and \((3,23)\), we need to solve the system of linear equations: \[ \begin{array}{l} a_{0} + a_{1}(1) + a_{2}(1)^{2} = 11 \\ a_{0} + a_{1}(2) + a_{2}(2)^{2} = 19 \\ a_{0} + a_{1}(3) + a_{2}(3)^{2} = 23 \end{array} \] Let's solve this system of linear equations to find the values of \( a_{0} \), \( a_{1} \), and \( a_{2} \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}a_{0}+a_{1}\times 1+a_{2}\times 1^{2}=11\\a_{0}+a_{1}\times 2+a_{2}\times 2^{2}=19\\a_{0}+a_{1}\times 3+a_{2}\times 3^{2}=23\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}a_{0}+a_{1}+a_{2}=11\\a_{0}+2a_{1}+4a_{2}=19\\a_{0}+3a_{1}+9a_{2}=23\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}a_{0}=11-a_{1}-a_{2}\\a_{0}+2a_{1}+4a_{2}=19\\a_{0}+3a_{1}+9a_{2}=23\end{array}\right.\) - step3: Substitute the value of \(a_{0}:\) \(\left\{ \begin{array}{l}11-a_{1}-a_{2}+2a_{1}+4a_{2}=19\\11-a_{1}-a_{2}+3a_{1}+9a_{2}=23\end{array}\right.\) - step4: Simplify: \(\left\{ \begin{array}{l}11+a_{1}+3a_{2}=19\\11+2a_{1}+8a_{2}=23\end{array}\right.\) - step5: Solve the equation: \(\left\{ \begin{array}{l}a_{1}=8-3a_{2}\\11+2a_{1}+8a_{2}=23\end{array}\right.\) - step6: Substitute the value of \(a_{1}:\) \(11+2\left(8-3a_{2}\right)+8a_{2}=23\) - step7: Simplify: \(27+2a_{2}=23\) - step8: Move the constant to the right side: \(2a_{2}=23-27\) - step9: Subtract the numbers: \(2a_{2}=-4\) - step10: Divide both sides: \(\frac{2a_{2}}{2}=\frac{-4}{2}\) - step11: Divide the numbers: \(a_{2}=-2\) - step12: Substitute the value of \(a_{2}:\) \(a_{1}=8-3\left(-2\right)\) - step13: Simplify: \(a_{1}=14\) - step14: Substitute the values of \(a_{1},a_{2}:\) \(a_{0}=11-14-\left(-2\right)\) - step15: Simplify: \(a_{0}=-1\) - step16: Calculate: \(\left\{ \begin{array}{l}a_{0}=-1\\a_{1}=14\\a_{2}=-2\end{array}\right.\) - step17: Check the solution: \(\left\{ \begin{array}{l}a_{0}=-1\\a_{1}=14\\a_{2}=-2\end{array}\right.\) - step18: Rewrite: \(\left(a_{0},a_{1},a_{2}\right) = \left(-1,14,-2\right)\) The solution to the system of linear equations is \( a_{0} = -1 \), \( a_{1} = 14 \), and \( a_{2} = -2 \). Therefore, the interpolating polynomial is \( p(t) = -1 + 14t - 2t^{2} \). So, the correct choice is: A. The interpolating polynomial is \( p(t) = -1 + 14t - 2t^{2} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the interpolating polynomial \( p(t) = a_{0} + a_{1} t + a_{2} t^{2} \), we need to solve the given system of equations: 1. \( a_{0} + a_{1} \cdot 1 + a_{2} \cdot 1^2 = 11 \) 2. \( a_{0} + a_{1} \cdot 2 + a_{2} \cdot 2^2 = 19 \) 3. \( a_{0} + a_{1} \cdot 3 + a_{2} \cdot 3^2 = 23 \) This translates to: 1. \( a_{0} + a_{1} + a_{2} = 11 \) 2. \( a_{0} + 2a_{1} + 4a_{2} = 19 \) 3. \( a_{0} + 3a_{1} + 9a_{2} = 23 \) Next, we can eliminate \( a_{0} \) from these equations. Subtract equation 1 from equations 2 and 3: From equations (2 - 1): \[ (2a_{1} + 4a_{2}) - (a_{1} + a_{2}) = 19 - 11 \] \[ a_{1} + 3a_{2} = 8 \] → (4) From equations (3 - 1): \[ (3a_{1} + 9a_{2}) - (a_{1} + a_{2}) = 23 - 11 \] \[ 2a_{1} + 8a_{2} = 12 \] Dividing this equation by 2: \[ a_{1} + 4a_{2} = 6 \] → (5) Now we have: 1. \( a_{1} + 3a_{2} = 8 \) (equation 4) 2. \( a_{1} + 4a_{2} = 6 \) (equation 5) Subtract equation 4 from equation 5: \[ (a_{1} + 4a_{2}) - (a_{1} + 3a_{2}) = 6 - 8 \] \[ a_{2} = -2 \] Now substitute \( a_{2} \) back into equation 4: \[ a_{1} + 3(-2) = 8 \] \[ a_{1} - 6 = 8 \] \[ a_{1} = 14 \] Now substitute \( a_{1} \) and \( a_{2} \) back into equation 1 to find \( a_{0} \): \[ a_{0} + 14 - 2 = 11 \] \[ a_{0} + 12 = 11 \] \[ a_{0} = -1 \] Thus, we have: - \( a_{0} = -1 \) - \( a_{1} = 14 \) - \( a_{2} = -2 \) The interpolating polynomial is: \[ p(t) = -1 + 14t - 2t^{2} \] So, the correct choice is: A. The interpolating polynomial is \( p(t) = -2t^2 + 14t - 1 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad