A molecule is measured and the width is \( 3 \times 10^{-6} \mathrm{~cm} \). How long will a string of 22.5 similar molecules be? Give your answer in scientific notation.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find the total length of a string of 22.5 similar molecules, we need to multiply the width of a single molecule by the number of molecules. First, we convert the width of one molecule into a more manageable form: \[ \text{Width of one molecule} = 3 \times 10^{-6} \text{ cm} \] Now, we multiply this width by 22.5: \[ \text{Total Length} = 22.5 \times (3 \times 10^{-6}) \text{ cm} \] Calculating this gives us: \[ 22.5 \times 3 = 67.5 \] So the length becomes: \[ \text{Total Length} = 67.5 \times 10^{-6} \text{ cm} \] To express this in scientific notation, we convert \( 67.5 \) into \( 6.75 \times 10^{1} \): \[ 67.5 \times 10^{-6} = 6.75 \times 10^{1} \times 10^{-6} = 6.75 \times 10^{-5} \text{ cm} \] Thus, the total length of the string of 22.5 similar molecules is: \[ \boxed{6.75 \times 10^{-5} \text{ cm}} \]
