Pregunta
upstudy study bank question image url

Alexander invested \( \$ 320 \) in an account paying an interest rate of \( 1.5 \% \) compounded annually. Assuming no deposits or withdrawals are made, how much money, to the nearest hundred dollars, would be in the account after 18 years?

Ask by Dickson Hampton. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 18 years, there would be approximately \$400 in the account.

Solución

To determine the amount in the account after 18 years with interest compounded annually, we use the compound interest formula:   A = P × (1 + r)^n where   P = initial principal = $320,   r = annual interest rate = 1.5% = 0.015,   n = number of years = 18. Substituting the values:   A = 320 × (1 + 0.015)^18 = 320 × (1.015)^18 Calculating (1.015)^18 (using a calculator or logarithmic approximation) gives approximately 1.307. Then:   A ≈ 320 × 1.307 ≈ 418.24 Finally, rounding to the nearest hundred dollars:   $418.24 rounds to $400. So, after 18 years, there would be about $400 in the account.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much money will be in the account after 18 years with an initial investment of \( \$320 \) at an interest rate of \( 1.5\% \) compounded annually, we can use the compound interest formula: \[ A = P(1 + r)^n \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial investment). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested. Plugging in the values: - \( P = 320 \) - \( r = 0.015 \) (which is \( 1.5\% \)) - \( n = 18 \) \[ A = 320(1 + 0.015)^{18} \] \[ A = 320(1.015)^{18} \] Calculating \( (1.015)^{18} \): \[ (1.015)^{18} \approx 1.346855 \] Now, substituting back into the formula: \[ A \approx 320 \times 1.346855 \approx 430.20 \] Rounding \( A \) to the nearest hundred dollars gives us \( \$400 \). So, after 18 years, Alexander would have approximately \( \$400 \) in the account.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad