Responder
The integral simplifies to \( \ln \left| \frac{z + 1}{z - 1} \right| + C \).
Solución
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{2}{1-z^{2}} dz\)
- step1: Rewrite the expression:
\(\int 2\times \frac{1}{1-z^{2}} dz\)
- step2: Use properties of integrals:
\(2\times \int \frac{1}{1-z^{2}} dz\)
- step3: Evaluate the integral:
\(2\times \frac{1}{2}\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\)
- step4: Multiply the terms:
\(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\)
- step5: Add the constant of integral C:
\(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{2 d z}{1 - z^2} \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{2}{1-z^{2}} dz\)
- step1: Rewrite the expression:
\(\int 2\times \frac{1}{1-z^{2}} dz\)
- step2: Use properties of integrals:
\(2\times \int \frac{1}{1-z^{2}} dz\)
- step3: Evaluate the integral:
\(2\times \frac{1}{2}\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\)
- step4: Multiply the terms:
\(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\)
- step5: Add the constant of integral C:
\(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)} + C, C \in \mathbb{R}\)
Let's solve the integrals step by step.
### Step 1: Solve the left integral
We need to evaluate the integral:
\[
\int \frac{x \, dx - y \, dy}{x^2 + y^2}
\]
This integral can be separated into two parts:
\[
\int \frac{x \, dx}{x^2 + y^2} - \int \frac{y \, dy}{x^2 + y^2}
\]
#### Part 1: \( \int \frac{x \, dx}{x^2 + y^2} \)
Using the substitution \( u = x^2 + y^2 \), we have \( du = 2x \, dx \) or \( dx = \frac{du}{2x} \). The integral becomes:
\[
\int \frac{x \, dx}{u} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| + C_1 = \frac{1}{2} \ln |x^2 + y^2| + C_1
\]
#### Part 2: \( \int \frac{y \, dy}{x^2 + y^2} \)
Using the substitution \( v = x^2 + y^2 \), we have \( dv = 2y \, dy \) or \( dy = \frac{dv}{2y} \). The integral becomes:
\[
\int \frac{y \, dy}{v} = \frac{1}{2} \int \frac{dv}{v} = \frac{1}{2} \ln |v| + C_2 = \frac{1}{2} \ln |x^2 + y^2| + C_2
\]
### Combining the results
Thus, the left integral evaluates to:
\[
\frac{1}{2} \ln |x^2 + y^2| - \frac{1}{2} \ln |x^2 + y^2| + C = C
\]
### Step 2: Solve the right integral
Now, we evaluate the integral:
\[
\int \frac{2 \, dz}{1 - z^2}
\]
This integral can be solved using the formula for the integral of a rational function:
\[
\int \frac{2 \, dz}{1 - z^2} = \ln \left| \frac{z + 1}{z - 1} \right| + C
\]
### Final Result
Putting it all together, we have:
\[
C = \ln \left| \frac{z + 1}{z - 1} \right| + C
\]
Thus, the final result of the original equation is:
\[
\int \frac{x \, dx - y \, dy}{x^2 + y^2} = \ln \left| \frac{z + 1}{z - 1} \right| + C
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución