Pregunta
upstudy study bank question image url

\( \int \frac { x d x - y d y } { x ^ { 2 } + y ^ { 2 } } = \int \frac { 2 d z } { 1 - z ^ { 2 } } \)

Ask by Hobbs Ward. in Kenya
Jan 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral simplifies to \( \ln \left| \frac{z + 1}{z - 1} \right| + C \).

Solución

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{2}{1-z^{2}} dz\) - step1: Rewrite the expression: \(\int 2\times \frac{1}{1-z^{2}} dz\) - step2: Use properties of integrals: \(2\times \int \frac{1}{1-z^{2}} dz\) - step3: Evaluate the integral: \(2\times \frac{1}{2}\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\) - step4: Multiply the terms: \(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\) - step5: Add the constant of integral C: \(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{2 d z}{1 - z^2} \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{2}{1-z^{2}} dz\) - step1: Rewrite the expression: \(\int 2\times \frac{1}{1-z^{2}} dz\) - step2: Use properties of integrals: \(2\times \int \frac{1}{1-z^{2}} dz\) - step3: Evaluate the integral: \(2\times \frac{1}{2}\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\) - step4: Multiply the terms: \(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)}\) - step5: Add the constant of integral C: \(\ln{\left(\left|\frac{z+1}{z-1}\right|\right)} + C, C \in \mathbb{R}\) Let's solve the integrals step by step. ### Step 1: Solve the left integral We need to evaluate the integral: \[ \int \frac{x \, dx - y \, dy}{x^2 + y^2} \] This integral can be separated into two parts: \[ \int \frac{x \, dx}{x^2 + y^2} - \int \frac{y \, dy}{x^2 + y^2} \] #### Part 1: \( \int \frac{x \, dx}{x^2 + y^2} \) Using the substitution \( u = x^2 + y^2 \), we have \( du = 2x \, dx \) or \( dx = \frac{du}{2x} \). The integral becomes: \[ \int \frac{x \, dx}{u} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| + C_1 = \frac{1}{2} \ln |x^2 + y^2| + C_1 \] #### Part 2: \( \int \frac{y \, dy}{x^2 + y^2} \) Using the substitution \( v = x^2 + y^2 \), we have \( dv = 2y \, dy \) or \( dy = \frac{dv}{2y} \). The integral becomes: \[ \int \frac{y \, dy}{v} = \frac{1}{2} \int \frac{dv}{v} = \frac{1}{2} \ln |v| + C_2 = \frac{1}{2} \ln |x^2 + y^2| + C_2 \] ### Combining the results Thus, the left integral evaluates to: \[ \frac{1}{2} \ln |x^2 + y^2| - \frac{1}{2} \ln |x^2 + y^2| + C = C \] ### Step 2: Solve the right integral Now, we evaluate the integral: \[ \int \frac{2 \, dz}{1 - z^2} \] This integral can be solved using the formula for the integral of a rational function: \[ \int \frac{2 \, dz}{1 - z^2} = \ln \left| \frac{z + 1}{z - 1} \right| + C \] ### Final Result Putting it all together, we have: \[ C = \ln \left| \frac{z + 1}{z - 1} \right| + C \] Thus, the final result of the original equation is: \[ \int \frac{x \, dx - y \, dy}{x^2 + y^2} = \ln \left| \frac{z + 1}{z - 1} \right| + C \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the integral \( \int \frac{x \, dx - y \, dy}{x^2 + y^2} = \int \frac{2 \, dz}{1 - z^2} \), we can start by analyzing the left-hand side. This integral is often found in contexts involving polar coordinates, where the substitution \( x = r \cos(\theta) \) and \( y = r \sin(\theta) \) transforms the expression. The differential area element in polar coordinates is \( r \, dr \, d\theta \), which encapsulates the circular symmetry of the problem. Now, shifting to the right-hand side, the integral \( \int \frac{2 \, dz}{1 - z^2} \) can be interpreted as the integral of the hyperbolic function. This integral can be evaluated using partial fractions or recognizing it as the derivative of an inverse hyperbolic function, leading us down the path of exponential identities and the fascinating links between trigonometric and hyperbolic functions. So whether you're seeing it through polar coordinates or through hyperbolic functions, this equation is a delightful journey into the realm of calculus!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad