For the function \( f(x)=x^{4}+\frac{2}{x} \) Find a) \( f \prime(x) \) b) \( f \prime \prime(x) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the derivatives of the function \( f(x) = x^{4} + \frac{2}{x} \): a) First, we can use the power rule and the quotient rule to find the first derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx}(x^{4}) + \frac{d}{dx}\left(\frac{2}{x}\right) = 4x^{3} - \frac{2}{x^{2}} \] Thus, \[ f'(x) = 4x^{3} - 2x^{-2} = 4x^{3} - \frac{2}{x^{2}}. \] b) Next, we find the second derivative \( f''(x) \): \[ f''(x) = \frac{d}{dx}(4x^{3}) + \frac{d}{dx}\left(-\frac{2}{x^{2}}\right) = 12x^{2} + \frac{4}{x^{3}}. \] Combining these, we get: \[ f''(x) = 12x^{2} + 4x^{-3} = 12x^{2} + \frac{4}{x^{3}}. \]
preguntas relacionadas
