Pregunta
upstudy study bank question image url

1.5.5 State whether \( v(x) \) is a function or not, and motivate your answer. 1.5.6 Write down the conditions that will make \( v \) a function. 1.5.7 Determine all values of: 1.5.7.1 \( y \) for which \( w(x)<0 \) 1.5.7.2 \( x \) for which \( w(x)<-\frac{7}{10} \) 1.5 .8 If a function is as determined in 2.2 , write down the equation(8) of \( v^{-1}(x) \). 1.5.9 If \( h(x)=w(x)-\sqrt{x} \) where the rango of \( \sqrt{x} \) is \( (0 ; \infty) \), calculate the range of \( h(1) \) (1)

Ask by Vaughan Schofield. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To determine if \( v(x) \) is a function, check if each input \( x \) maps to exactly one output. If it does, \( v(x) \) is a function. To make \( v \) a function, ensure that each input has a unique output and that the domain is clearly defined. For \( w(x) < 0 \), solve the inequality to find the values of \( y \). For \( w(x) < -\frac{7}{10} \), solve similarly to find the values of \( x \). To find the inverse function \( v^{-1}(x) \), express \( x \) in terms of \( v(x) \). For \( h(1) \), evaluate \( h(1) = w(1) - \sqrt{1} \) using the given function \( h(x) = w(x) - \sqrt{x} \).

Solución

To address the questions, we need to analyze the function \( v(x) \) and the function \( w(x) \). Let's go through each part step by step. ### 1.5.5 State whether \( v(x) \) is a function or not, and motivate your answer. A relation \( v(x) \) is considered a function if for every input \( x \), there is exactly one output \( v(x) \). To determine if \( v(x) \) is a function, we need to check if any input \( x \) corresponds to multiple outputs. **Motivation:** - If \( v(x) \) passes the vertical line test (i.e., any vertical line intersects the graph of \( v(x) \) at most once), then \( v(x) \) is a function. - If there exists at least one \( x \) such that \( v(x_1) = v(x_2) \) for \( x_1 \neq x_2 \), then \( v(x) \) is not a function. ### 1.5.6 Write down the conditions that will make \( v \) a function. For \( v(x) \) to be a function, the following conditions must be satisfied: 1. Each input \( x \) must map to exactly one output \( v(x) \). 2. The relation must not have any \( x \) values that produce multiple \( v(x) \) values. 3. The domain of \( v \) must be clearly defined. ### 1.5.7 Determine all values of: #### 1.5.7.1 \( y \) for which \( w(x)<0 \) To find the values of \( y \) for which \( w(x) < 0 \), we need to analyze the function \( w(x) \). This typically involves solving the inequality \( w(x) < 0 \). #### 1.5.7.2 \( x \) for which \( w(x)<-\frac{7}{10} \) Similarly, to find the values of \( x \) for which \( w(x) < -\frac{7}{10} \), we will solve the inequality \( w(x) < -\frac{7}{10} \). ### 1.5.8 If a function is as determined in 2.2, write down the equation (8) of \( v^{-1}(x) \). To find the inverse function \( v^{-1}(x) \), we need to express \( x \) in terms of \( v(x) \) and then solve for \( v^{-1}(x) \). This requires knowing the specific form of \( v(x) \). ### 1.5.9 If \( h(x)=w(x)-\sqrt{x} \) where the range of \( \sqrt{x} \) is \( (0 ; \infty) \), calculate the range of \( h(1) \). To find the range of \( h(1) \), we will evaluate \( h(1) = w(1) - \sqrt{1} \). This requires knowing the value of \( w(1) \). ### Next Steps To proceed with the calculations for parts 1.5.7.1, 1.5.7.2, and 1.5.9, I need the specific forms of the functions \( w(x) \) and \( v(x) \). Please provide these functions or any additional information needed to solve the inequalities and evaluate \( h(1) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine whether \( v(x) \) is a function, we must check if each input in its domain corresponds to exactly one output. If any input yields multiple outputs, then \( v(x) \) fails to qualify as a function. For example, if \( v(x) \) is defined as \( v(x) = \sqrt{x} \) for \( x \geq 0 \), it is indeed a function since every non-negative input has one unique output. To qualify \( v \) as a function, it should satisfy the "vertical line test": no vertical line should intersect the graph of \( v \) more than once. Moreover, it’s essential to have a well-defined rule that assigns each input in the domain a single output. Conditions like restricting the domain or ensuring that the output is uniquely derived from the given input are critical for confirming \( v \) as a function.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad