Pregunta
upstudy study bank question image url

Consider the line \( y=7 x-2 \). (a) Find the equation of the line that is parallel to this line and passes through the point \( (-3,5) \). (b) Find the equation of the line that is perpendicular to this line and passes through the point \( (-3,5) \).

Ask by Pope Evans. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The equation of the parallel line is \( y = 7x + 26 \). (b) The equation of the perpendicular line is \( y = -\frac{1}{7}x + \frac{32}{7} \).

Solución

We are given the line y = 7x - 2. Notice that the slope of this line is 7. (a) For a line parallel to y = 7x - 2, the slope must also be 7. Using the point-slope form of a line (y - y₁ = m(x - x₁)) with the point (-3, 5), we have:   y - 5 = 7(x - (-3))   y - 5 = 7(x + 3) Now, solve for y:   y = 7x + 21 + 5   y = 7x + 26 So, the equation of the line parallel to y = 7x - 2 that passes through (-3, 5) is y = 7x + 26. (b) For a line perpendicular to y = 7x - 2, the slope must be the negative reciprocal of 7, which is -1/7. Again using the point-slope form with the same point (-3, 5):   y - 5 = (-1/7)(x - (-3))   y - 5 = (-1/7)(x + 3) Now, solve for y:   y = (-1/7)x - (3/7) + 5 Express 5 as a fraction with denominator 7 (i.e., 35/7):   y = (-1/7)x + (-3/7 + 35/7)   y = (-1/7)x + 32/7 Thus, the equation of the line perpendicular to y = 7x - 2 and passing through (-3, 5) is y = (-1/7)x + 32/7.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the parallel line, recall that parallel lines have the same slope. The slope from the equation \( y = 7x - 2 \) is \( 7 \). Using point-slope form \( y - y_1 = m(x - x_1) \), where \( m \) is the slope and \( (x_1, y_1) = (-3, 5) \), we have: \[ y - 5 = 7(x + 3) \] Distributing gives: \[ y - 5 = 7x + 21 \] Adding \( 5 \) to both sides yields: \[ y = 7x + 26 \] Now for the perpendicular line, the slope of a line perpendicular to \( y = 7x - 2 \) is the negative reciprocal of \( 7 \), which is \( -\frac{1}{7} \). Using the same point-slope form again: \[ y - 5 = -\frac{1}{7}(x + 3) \] Distributing gives: \[ y - 5 = -\frac{1}{7}x - \frac{3}{7} \] Adding \( 5 \) (or \( \frac{35}{7} \)) to both sides yields: \[ y = -\frac{1}{7}x + \frac{32}{7} \] ### Summary (a) The equation of the line parallel to \( y = 7x - 2 \) passing through \( (-3, 5) \) is \( y = 7x + 26 \). (b) The equation of the line perpendicular to \( y = 7x - 2 \) passing through \( (-3, 5) \) is \( y = -\frac{1}{7}x + \frac{32}{7} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad