Factor the following completely. \( -50 w^{3}-20 w^{2}+48 w \) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( -50 w^{3}-20 w^{2}+48 w= \) (Type your answer in factored form.) B. The trinomial is not factorable.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
First, let's identify the greatest common factor (GCF) of the terms in the polynomial, which is \( -2w \). Factoring this out gives: \[ -50 w^{3}-20 w^{2}+48 w = -2w(25w^{2} + 10w - 24) \] Now, we need to factor the quadratic \( 25w^{2} + 10w - 24 \). Using the quadratic formula or by grouping, we arrive at: \[ -2w(25w^{2} + 10w - 24) = -2w(5w - 6)(5w + 4) \] Therefore, the final factored form is: \[ -50 w^{3}-20 w^{2}+48 w = -2w(5w - 6)(5w + 4) \] This brings us to option A.
