\begin{tabular}{l} Simplify the following: \\ \( \qquad \frac{7 x^{2}}{3}-\frac{9 x^{2}}{7}-\frac{x^{2}}{21} \) \\ Answer: \\ \hline Check answer 2 attempts remaining \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To simplify \( \frac{7 x^{2}}{3} - \frac{9 x^{2}}{7} - \frac{x^{2}}{21} \), we need to find a common denominator. The least common multiple (LCM) of 3, 7, and 21 is 21. Rewriting each term with a denominator of 21: 1. \( \frac{7 x^{2}}{3} = \frac{7 x^{2} \cdot 7}{3 \cdot 7} = \frac{49 x^{2}}{21} \) 2. \( \frac{9 x^{2}}{7} = \frac{9 x^{2} \cdot 3}{7 \cdot 3} = \frac{27 x^{2}}{21} \) 3. \( \frac{-x^{2}}{21} = \frac{-x^{2}}{21} \) Now, combine all the fractions: \[ \frac{49 x^{2}}{21} - \frac{27 x^{2}}{21} - \frac{x^{2}}{21} = \frac{(49 - 27 - 1)x^{2}}{21} = \frac{21 x^{2}}{21} = x^{2} \] Thus, the simplified expression is \( x^{2} \).
