Pregunta
1. \( x^{2}-5 x+6=0 \) 2. \( x^{3}-3 x^{2}+2 x=0 \) 3 \( x^{2}+7 x=-2 \) 4 \( 7 x^{2}+24 x=15 \) 5. \( (x+2)(x-3) \)
Ask by Christensen Stewart. in South Africa
Feb 25,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Here are the solutions for each equation:
1. \( x^{2}-5x+6=0 \): \( x=2 \) and \( x=3 \)
2. \( x^{3}-3x^{2}+2x=0 \): \( x=0 \), \( x=1 \), and \( x=2 \)
3. \( x^{2}+7x=-2 \): \( x=-\frac{7+\sqrt{41}}{2} \) and \( x=\frac{-7+\sqrt{41}}{2} \)
4. \( 7x^{2}+24x=15 \): \( x=-\frac{12+\sqrt{249}}{7} \) and \( x=\frac{-12+\sqrt{249}}{7} \)
5. \( (x+2)(x-3)=0 \): \( x=-2 \) and \( x=3 \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(x^{3}-3x^{2}+2x=0\)
- step1: Factor the expression:
\(x\left(x-2\right)\left(x-1\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x=0\\&x-2=0\\&x-1=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=0\\&x=2\\&x=1\end{align}\)
- step4: Rewrite:
\(x_{1}=0,x_{2}=1,x_{3}=2\)
Solve the equation \( x^{2}-5 x+6=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(x^{2}-5x+6=0\)
- step1: Factor the expression:
\(\left(x-3\right)\left(x-2\right)=0\)
- step2: Separate into possible cases:
\(\begin{align}&x-3=0\\&x-2=0\end{align}\)
- step3: Solve the equation:
\(\begin{align}&x=3\\&x=2\end{align}\)
- step4: Rewrite:
\(x_{1}=2,x_{2}=3\)
Solve the equation \( x^{2}+7 x=-2 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(x^{2}+7x=-2\)
- step1: Move the expression to the left side:
\(x^{2}+7x+2=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-7\pm \sqrt{7^{2}-4\times 2}}{2}\)
- step3: Simplify the expression:
\(x=\frac{-7\pm \sqrt{41}}{2}\)
- step4: Separate into possible cases:
\(\begin{align}&x=\frac{-7+\sqrt{41}}{2}\\&x=\frac{-7-\sqrt{41}}{2}\end{align}\)
- step5: Rewrite the fraction:
\(\begin{align}&x=\frac{-7+\sqrt{41}}{2}\\&x=-\frac{7+\sqrt{41}}{2}\end{align}\)
- step6: Rewrite:
\(x_{1}=-\frac{7+\sqrt{41}}{2},x_{2}=\frac{-7+\sqrt{41}}{2}\)
Solve the equation \( 7 x^{2}+24 x=15 \).
Solve the quadratic equation by following steps:
- step0: Solve using the quadratic formula:
\(7x^{2}+24x=15\)
- step1: Move the expression to the left side:
\(7x^{2}+24x-15=0\)
- step2: Solve using the quadratic formula:
\(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{2\times 7}\)
- step3: Simplify the expression:
\(x=\frac{-24\pm \sqrt{24^{2}-4\times 7\left(-15\right)}}{14}\)
- step4: Simplify the expression:
\(x=\frac{-24\pm \sqrt{996}}{14}\)
- step5: Simplify the expression:
\(x=\frac{-24\pm 2\sqrt{249}}{14}\)
- step6: Separate into possible cases:
\(\begin{align}&x=\frac{-24+2\sqrt{249}}{14}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\)
- step7: Simplify the expression:
\(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=\frac{-24-2\sqrt{249}}{14}\end{align}\)
- step8: Simplify the expression:
\(\begin{align}&x=\frac{-12+\sqrt{249}}{7}\\&x=-\frac{12+\sqrt{249}}{7}\end{align}\)
- step9: Rewrite:
\(x_{1}=-\frac{12+\sqrt{249}}{7},x_{2}=\frac{-12+\sqrt{249}}{7}\)
Solve the equation \( (x+2)(x-3)=0 \).
Solve the quadratic equation by following steps:
- step0: Solve by factoring:
\(\left(x+2\right)\left(x-3\right)=0\)
- step1: Separate into possible cases:
\(\begin{align}&x-3=0\\&x+2=0\end{align}\)
- step2: Solve the equation:
\(\begin{align}&x=3\\&x=-2\end{align}\)
- step3: Rewrite:
\(x_{1}=-2,x_{2}=3\)
Here are the solutions for each of the equations provided:
1. **Equation:** \( x^{2}-5x+6=0 \)
- **Solutions:** \( x_{1}=2, x_{2}=3 \)
2. **Equation:** \( x^{3}-3x^{2}+2x=0 \)
- **Solutions:** \( x_{1}=0, x_{2}=1, x_{3}=2 \)
3. **Equation:** \( x^{2}+7x=-2 \)
- **Rearranged:** \( x^{2}+7x+2=0 \)
- **Solutions:** \( x_{1}=-\frac{7+\sqrt{41}}{2}, x_{2}=\frac{-7+\sqrt{41}}{2} \)
4. **Equation:** \( 7x^{2}+24x=15 \)
- **Rearranged:** \( 7x^{2}+24x-15=0 \)
- **Solutions:** \( x_{1}=-\frac{12+\sqrt{249}}{7}, x_{2}=\frac{-12+\sqrt{249}}{7} \)
5. **Equation:** \( (x+2)(x-3)=0 \)
- **Solutions:** \( x_{1}=-2, x_{2}=3 \)
If you need further assistance or explanations for any of these solutions, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve the equation \( x^{2}-5 x+6=0 \), you can factor it into \( (x-2)(x-3)=0 \). This reveals the solutions: \( x=2 \) and \( x=3 \). Always double-check by substituting back into the original equation! For \( x^{3}-3 x^{2}+2 x=0 \), you can factor out \( x \) to obtain \( x(x^{2}-3x+2)=0 \). This factors further into \( x(x-1)(x-2)=0 \), leading to the solutions \( x=0 \), \( x=1 \), and \( x=2 \). Remember, finding a common factor can save time, so keep an eye out for it!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium