Pregunta
upstudy study bank question image url

The solution to the trigonometric equation \( \frac{1}{2} \csc ^{2} x-1=0 \) is \( x=\longrightarrow x= \) \( x=\longrightarrow \) and \( x=\longrightarrow \) Show your work.

Ask by Wang Carter. in the United States
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions to the equation \( \frac{1}{2} \csc^{2} x - 1 = 0 \) are: \[ x = \frac{\pi}{4} + 2k\pi \quad \text{and} \quad x = \frac{3\pi}{4} + 2k\pi \quad \text{for any integer } k \]

Solución

To solve the trigonometric equation: \[ \frac{1}{2} \csc^{2} x - 1 = 0 \] Let's follow the steps to find all solutions for \( x \). ### Step 1: Rewrite the Equation in Terms of Sine Recall that the cosecant function is the reciprocal of the sine function: \[ \csc x = \frac{1}{\sin x} \quad \text{and} \quad \csc^{2} x = \frac{1}{\sin^{2} x} \] Substitute \(\csc^{2} x\) into the equation: \[ \frac{1}{2} \cdot \frac{1}{\sin^{2} x} - 1 = 0 \] ### Step 2: Solve for \(\sin^{2} x\) Multiply both sides of the equation by \(2\) to eliminate the fraction: \[ \frac{1}{\sin^{2} x} - 2 = 0 \] Add \(2\) to both sides: \[ \frac{1}{\sin^{2} x} = 2 \] Take the reciprocal of both sides: \[ \sin^{2} x = \frac{1}{2} \] ### Step 3: Find \(\sin x\) Take the square root of both sides, remembering to consider both positive and negative roots: \[ \sin x = \pm \frac{\sqrt{2}}{2} \] ### Step 4: Determine the General Solutions for \( x \) The equation \(\sin x = \pm \frac{\sqrt{2}}{2}\) has solutions at specific angles within the unit circle. Specifically: 1. **For \(\sin x = \frac{\sqrt{2}}{2}\):** - \( x = \frac{\pi}{4} + 2k\pi \) - \( x = \frac{3\pi}{4} + 2k\pi \) 2. **For \(\sin x = -\frac{\sqrt{2}}{2}\):** - \( x = \frac{5\pi}{4} + 2k\pi \) - \( x = \frac{7\pi}{4} + 2k\pi \) where \( k \) is any integer. ### Step 5: Express the Solutions Concisely Notice that all solutions can be expressed in a unified form by recognizing the periodicity of the sine function (which has a period of \( 2\pi \)) and the symmetry in the unit circle: \[ x = \frac{\pi}{4} + \frac{\pi}{2}k \quad \text{for any integer } k \] This captures all four cases by varying \( k \). However, to present the primary solutions within one period (\( 0 \) to \( 2\pi \)), we can write: \[ \boxed{ \begin{aligned} x &= \frac{\pi}{4} + 2k\pi \\ \text{and} \quad x &= \frac{3\pi}{4} + 2k\pi \\ \end{aligned} \quad \text{for any integer } k } \] ### Final Answer The solutions to the equation \( \frac{1}{2} \csc^{2} x - 1 = 0 \) are: \[ \boxed{ \begin{aligned} x &= \frac{\pi}{4} + 2k\pi \\ \text{and} \quad x &= \frac{3\pi}{4} + 2k\pi \\ \end{aligned} \quad \text{for any integer } k } \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \frac{1}{2} \csc^2 x - 1 = 0 \), we can start by isolating \( \csc^2 x \): 1. Begin by adding 1 to both sides: \[ \frac{1}{2} \csc^2 x = 1 \] 2. Multiply both sides by 2: \[ \csc^2 x = 2 \] 3. Recall that \( \csc x = \frac{1}{\sin x} \), so we have: \[ \frac{1}{\sin^2 x} = 2 \] 4. Taking the reciprocal gives: \[ \sin^2 x = \frac{1}{2} \] 5. Taking the square root of both sides: \[ \sin x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2} \] Now we find the general solutions for \( x \): - For \( \sin x = \frac{\sqrt{2}}{2} \): \[ x = \frac{\pi}{4} + 2k\pi \quad \text{and} \quad x = \frac{3\pi}{4} + 2k\pi, \, k \in \mathbb{Z} \] - For \( \sin x = -\frac{\sqrt{2}}{2} \): \[ x = \frac{5\pi}{4} + 2k\pi \quad \text{and} \quad x = \frac{7\pi}{4} + 2k\pi, \, k \in \mathbb{Z} \] Putting it all together, the complete solution set for \( x \) is: \[ x = \frac{\pi}{4} + 2k\pi, \quad \frac{3\pi}{4} + 2k\pi, \quad \frac{5\pi}{4} + 2k\pi, \quad \frac{7\pi}{4} + 2k\pi, \, k \in \mathbb{Z} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad