Fill in the missing values to make the equations true. \[ \begin{array}{l}\text { (a) } \log _{7} 4+\log _{7} 3=\log _{7} \square \\ \text { (b) } \log _{3} \square-\log _{3} 7=\log _{3} \frac{5}{7} \\ \text { (c) } \log _{3} 4=2 \log _{3} \square\end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To solve for the missing values in the given logarithmic equations, we can use the properties of logarithms. (a) Using the property of logarithms that states \(\log_a b + \log_a c = \log_a (b \cdot c)\): \[ \log_{7} 4 + \log_{7} 3 = \log_{7} (4 \cdot 3) \] Calculating \(4 \cdot 3\), we get 12. Thus: \[ \log_{7} 4 + \log_{7} 3 = \log_{7} 12 \] So, the missing value for (a) is **12**. (b) Using the property of logarithms that states \(\log_a b - \log_a c = \log_a \left( \frac{b}{c} \right)\): \[ \log_{3} \square - \log_{3} 7 = \log_{3} \frac{5}{7} \] This can be rewritten as: \[ \log_{3} \left( \frac{\square}{7} \right) = \log_{3} \frac{5}{7} \] Since the logarithms are equal, we can set the arguments equal to each other: \[ \frac{\square}{7} = \frac{5}{7} \] Multiplying both sides by 7 gives us \(\square = 5\). So, the missing value for (b) is **5**. (c) Using the property of logarithms that states \(k \log_a b = \log_a (b^k)\): \[ \log_{3} 4 = 2 \log_{3} \square \implies \log_{3} 4 = \log_{3} (\square^2) \] Since the logarithms are equal, we can set the arguments equal to each other: \[ 4 = \square^2 \] Taking the square root gives us: \[ \square = \sqrt{4} = 2 \] So, the missing value for (c) is **2**. In summary, the missing values are: - (a) 12 - (b) 5 - (c) 2
