Find each derivative 3) \( y=\left(\frac{x}{3 x^{2}+2 x+1}\right)^{\frac{1}{3}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To find the derivative of \( y=\left(\frac{x}{3 x^{2}+2 x+1}\right)^{\frac{1}{3}} \), we can apply the chain rule and the quotient rule. Let \( u = \frac{x}{3x^2 + 2x + 1} \). The derivative of \( y = u^{\frac{1}{3}} \) is given by: \[ \frac{dy}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \cdot \frac{du}{dx} \] Now, we need to calculate \( \frac{du}{dx} \) using the quotient rule: \[ \frac{du}{dx} = \frac{(3x^2 + 2x + 1)(1) - x(6x + 2)}{(3x^2 + 2x + 1)^2} \] Simplifying the numerator: \[ = (3x^2 + 2x + 1) - (6x^2 + 2x) = 3x^2 + 2x + 1 - 6x^2 - 2x = -3x^2 + 1 \] Thus, we have: \[ \frac{du}{dx} = \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Now substituting this back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Substituting back \( u \): \[ = \frac{1}{3} \left(\frac{x}{3x^2 + 2x + 1}\right)^{-\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Finally, we can express this in a simplified form: \[ \frac{dy}{dx} = \frac{1}{3} \left(\frac{3x^2 + 2x + 1}{x}\right)^{\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] And that gives us the derivative \( \frac{dy}{dx} \).
