Pregunta
upstudy study bank question image url

Find each derivative 3) \( y=\left(\frac{x}{3 x^{2}+2 x+1}\right)^{\frac{1}{3}} \)

Ask by Barber Mullins. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( y = \left(\frac{x}{3x^{2}+2x+1}\right)^{\frac{1}{3}} \) is: \[ \frac{dy}{dx} = \frac{1 - 3x^{2}}{3x^{\frac{2}{3}}(3x^{2} + 2x + 1)^{\frac{4}{3}}} \]

Solución

We wish to differentiate   y = [x/(3x² + 2x + 1)]^(1/3). Step 1. Write y in terms of an inner function. Let   f(x) = x/(3x² + 2x + 1),   so that y = [f(x)]^(1/3). Step 2. Differentiate using the chain rule. The derivative of y with respect to x is   dy/dx = (1/3) [f(x)]^(–2/3) · f '(x). Step 3. Compute f '(x) using the quotient rule. Recall the quotient rule: if f(x) = u(x)/v(x), then   f '(x) = (u'v – uv') / [v(x)]². For our function,   u(x) = x → u' = 1,   v(x) = 3x² + 2x + 1 → v' = 6x + 2. Thus,   f '(x) = { (1)(3x² + 2x + 1) – x(6x + 2) } / (3x² + 2x + 1)². Simplify the numerator:   3x² + 2x + 1 – 6x² – 2x = –3x² + 1. So,   f '(x) = (–3x² + 1) / (3x² + 2x + 1)². Step 4. Combine the results. Substitute f(x) and f '(x) back into the chain rule formula:   dy/dx = (1/3) · [x/(3x² + 2x + 1)]^(–2/3) · [ (–3x² + 1) / (3x² + 2x + 1)² ]. Notice that the factor [x/(3x²+2x+1)]^(–2/3) can be rewritten as   [x/(3x²+2x+1)]^(–2/3) = [ (3x²+2x+1)/x ]^(2/3). Thus we have:   dy/dx = (1/3) · [ (3x²+2x+1)/x ]^(2/3) · [ (–3x² + 1) / (3x²+2x+1)² ]. Step 5. Simplify the expression. Combine the factors involving (3x² + 2x + 1):   [ (3x²+2x+1)^(2/3) ] / (3x²+2x+1)²     = 1 / (3x²+2x+1)^(4/3). Also, the x in the denominator contributes a factor of x^(2/3) from [ (3x²+2x+1)/x ]^(2/3). Thus, the derivative becomes:   dy/dx = (1/3) · (–3x² + 1) / [ x^(2/3)(3x²+2x+1)^(4/3) ]. It is often nice to write the numerator as (1 – 3x²). So the final derivative is:   dy/dx = (1 – 3x²) / [ 3·x^(2/3)·(3x²+2x+1)^(4/3) ]. This is the desired derivative.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the derivative of \( y=\left(\frac{x}{3 x^{2}+2 x+1}\right)^{\frac{1}{3}} \), we can apply the chain rule and the quotient rule. Let \( u = \frac{x}{3x^2 + 2x + 1} \). The derivative of \( y = u^{\frac{1}{3}} \) is given by: \[ \frac{dy}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \cdot \frac{du}{dx} \] Now, we need to calculate \( \frac{du}{dx} \) using the quotient rule: \[ \frac{du}{dx} = \frac{(3x^2 + 2x + 1)(1) - x(6x + 2)}{(3x^2 + 2x + 1)^2} \] Simplifying the numerator: \[ = (3x^2 + 2x + 1) - (6x^2 + 2x) = 3x^2 + 2x + 1 - 6x^2 - 2x = -3x^2 + 1 \] Thus, we have: \[ \frac{du}{dx} = \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Now substituting this back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{3} u^{-\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Substituting back \( u \): \[ = \frac{1}{3} \left(\frac{x}{3x^2 + 2x + 1}\right)^{-\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] Finally, we can express this in a simplified form: \[ \frac{dy}{dx} = \frac{1}{3} \left(\frac{3x^2 + 2x + 1}{x}\right)^{\frac{2}{3}} \cdot \frac{-3x^2 + 1}{(3x^2 + 2x + 1)^2} \] And that gives us the derivative \( \frac{dy}{dx} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad