Pregunta
upstudy study bank question image url

Watch your cholesterol: The mean serum cholesterol level for U.S. adults was 200, with a standard devlation of 40.6 (the units are milligrams per deciliter). A simple random sample of 106 adults is chosen. Use the T1-84 Plus calculator. Round the answers to at least four decimal places. Part 1 of 3 (a) What is the probability that the sample mean cholesterol level is greater than 210 ? The probability that the sample mean cholesterol level is greater than 210 is \( \square \) 0.0056 . Part: \( 1 / 3 \) Part 2 of 3 (b) What is the probability that the sample mean cholesterol level is between 189 and 197? The probability that the sample mean cholesterol level is between 189 and 197 is \( \square \) .

Ask by Franklin Weber. in the United States
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that the sample mean cholesterol level is greater than 210 is approximately 0.0056. The probability that the sample mean cholesterol level is between 189 and 197 is approximately 0.2210.

Solución

To solve the problem, we will use the properties of the sampling distribution of the sample mean. Given the mean serum cholesterol level (\(\mu\)) is 200 mg/dL and the standard deviation (\(\sigma\)) is 40.6 mg/dL, we can calculate the standard error (SE) of the sample mean for a sample size (\(n\)) of 106 adults. ### Step 1: Calculate the Standard Error (SE) The standard error is calculated using the formula: \[ SE = \frac{\sigma}{\sqrt{n}} \] Substituting the known values: \[ SE = \frac{40.6}{\sqrt{106}} \] ### Step 2: Calculate the Probability for Part (a) We need to find the probability that the sample mean cholesterol level is greater than 210 mg/dL. We will first calculate the z-score for 210 mg/dL using the formula: \[ z = \frac{\bar{x} - \mu}{SE} \] Where: - \(\bar{x} = 210\) - \(\mu = 200\) ### Step 3: Calculate the Probability for Part (b) Next, we will find the probability that the sample mean cholesterol level is between 189 and 197 mg/dL. We will calculate the z-scores for both values (189 and 197) using the same z-score formula. Now, let's perform the calculations for both parts. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(210-200\right)}{\left(\frac{40.6}{\sqrt{106}}\right)}\) - step1: Remove the parentheses: \(\frac{210-200}{\frac{40.6}{\sqrt{106}}}\) - step2: Divide the terms: \(\frac{210-200}{\frac{203}{5\sqrt{106}}}\) - step3: Subtract the numbers: \(\frac{10}{\frac{203}{5\sqrt{106}}}\) - step4: Multiply by the reciprocal: \(10\times \frac{5\sqrt{106}}{203}\) - step5: Multiply: \(\frac{10\times 5\sqrt{106}}{203}\) - step6: Multiply: \(\frac{50\sqrt{106}}{203}\) Calculate or simplify the expression \( (189-200)/(40.6/\sqrt(106)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(189-200\right)}{\left(\frac{40.6}{\sqrt{106}}\right)}\) - step1: Remove the parentheses: \(\frac{189-200}{\frac{40.6}{\sqrt{106}}}\) - step2: Divide the terms: \(\frac{189-200}{\frac{203}{5\sqrt{106}}}\) - step3: Subtract the numbers: \(\frac{-11}{\frac{203}{5\sqrt{106}}}\) - step4: Multiply by the reciprocal: \(-11\times \frac{5\sqrt{106}}{203}\) - step5: Multiply: \(-\frac{11\times 5\sqrt{106}}{203}\) - step6: Multiply: \(-\frac{55\sqrt{106}}{203}\) Calculate or simplify the expression \( 40.6/\sqrt(106) \). Calculate the value by following steps: - step0: Calculate: \(\frac{40.6}{\sqrt{106}}\) - step1: Divide the terms: \(\frac{203}{5\sqrt{106}}\) - step2: Multiply by the Conjugate: \(\frac{203\sqrt{106}}{5\sqrt{106}\times \sqrt{106}}\) - step3: Multiply the numbers: \(\frac{203\sqrt{106}}{530}\) Calculate or simplify the expression \( (197-200)/(40.6/\sqrt(106)) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(197-200\right)}{\left(\frac{40.6}{\sqrt{106}}\right)}\) - step1: Remove the parentheses: \(\frac{197-200}{\frac{40.6}{\sqrt{106}}}\) - step2: Divide the terms: \(\frac{197-200}{\frac{203}{5\sqrt{106}}}\) - step3: Subtract the numbers: \(\frac{-3}{\frac{203}{5\sqrt{106}}}\) - step4: Multiply by the reciprocal: \(-3\times \frac{5\sqrt{106}}{203}\) - step5: Multiply: \(-\frac{3\times 5\sqrt{106}}{203}\) - step6: Multiply: \(-\frac{15\sqrt{106}}{203}\) It seems there was an issue with calculating the probabilities directly. Let's break down the calculations manually for clarity. ### Step 1: Calculate the Standard Error (SE) Using the formula: \[ SE = \frac{40.6}{\sqrt{106}} \approx 3.9434 \] ### Step 2: Calculate the z-score for 210 mg/dL Using the z-score formula: \[ z = \frac{210 - 200}{SE} = \frac{10}{3.9434} \approx 2.5359 \] ### Step 3: Calculate the Probability for Part (a) To find the probability that the sample mean is greater than 210 mg/dL, we need to find \(P(Z > 2.5359)\). This can be found using the standard normal distribution table or a calculator. Using a standard normal distribution table, we find: \[ P(Z > 2.5359) \approx 0.0056 \] ### Step 4: Calculate the z-scores for 189 mg/dL and 197 mg/dL For 189 mg/dL: \[ z = \frac{189 - 200}{SE} = \frac{-11}{3.9434} \approx -2.7900 \] For 197 mg/dL: \[ z = \frac{197 - 200}{SE} = \frac{-3}{3.9434} \approx -0.7608 \] ### Step 5: Calculate the Probability for Part (b) Now we need to find the probability that the sample mean is between 189 and 197 mg/dL, which is \(P(-2.7900 < Z < -0.7608)\). Using the standard normal distribution table: 1. Find \(P(Z < -2.7900)\) 2. Find \(P(Z < -0.7608)\) Let's calculate these probabilities. Using the standard normal distribution table or calculator: - \(P(Z < -2.7900) \approx 0.0026\) - \(P(Z < -0.7608) \approx 0.2236\) Now, we can find the probability that the sample mean is between 189 and 197 mg/dL: \[ P(-2.7900 < Z < -0.7608) = P(Z < -0.7608) - P(Z < -2.7900) \approx 0.2236 - 0.0026 = 0.2210 \] ### Final Answers - (a) The probability that the sample mean cholesterol level is greater than 210 is approximately \(0.0056\). - (b) The probability that the sample mean cholesterol level is between 189 and 197 is approximately \(0.2210\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the probability that the sample mean cholesterol level is between 189 and 197, we will use the Central Limit Theorem. The standard deviation of the sample mean (also known as the standard error) is calculated as the population standard deviation divided by the square root of the sample size. In this case, the standard error is \( \sigma_{\bar{x}} = \frac{40.6}{\sqrt{106}} \approx 3.95 \). Next, we will convert the sample means of 189 and 197 to their corresponding z-scores: For 189: \( z_1 = \frac{189 - 200}{3.95} \approx -2.78 \) For 197: \( z_2 = \frac{197 - 200}{3.95} \approx -0.76 \) Now, we can use the T1-84 Plus calculator to find the probabilities corresponding to these z-scores. The probability for \( z_1 \) gives us \( P(Z < -2.78) \approx 0.0027 \) and for \( z_2 \) gives us \( P(Z < -0.76) \approx 0.2236 \). Finally, to find the probability that the sample mean is between 189 and 197, we calculate: \( P(-2.78 < Z < -0.76) = P(Z < -0.76) - P(Z < -2.78) \). This results in: \( 0.2236 - 0.0027 = 0.2209 \). Thus, the probability that the sample mean cholesterol level is between 189 and 197 is approximately \( \square \) 0.2209.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad