\( 1 \in \) Solve the equation using the quadratic formula. \[ x^{2}-4 x+40=0 \] The solution set is \( \} \). (Simplity your answer. Type an exact answer, using radicals and \( i \) as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate 0 of 1.5 .73 answers as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( x^{2} - 4x + 40 = 0 \) using the quadratic formula, we identify \( a = 1 \), \( b = -4 \), and \( c = 40 \). The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substituting our values in, we first calculate the discriminant: \[ b^2 - 4ac = (-4)^2 - 4 \cdot 1 \cdot 40 = 16 - 160 = -144 \] Since the discriminant is negative, we will have complex roots. Now plugging into the formula: \[ x = \frac{-(-4) \pm \sqrt{-144}}{2 \cdot 1} = \frac{4 \pm \sqrt{-144}}{2} = \frac{4 \pm 12i}{2} = 2 \pm 6i \] Thus, the solution set is \( \{ 2 + 6i, 2 - 6i \} \).
