Pregunta
upstudy study bank question image url

Find the equation of the circle passing through the point \( (3,4) \) and having equations of two of its diameters \( x+y-14=0 \) and \( 2 x-y-4=0 \quad \) Ans: \( x^{2}+y^{2}-12 x-16 y+75=0 \)

Ask by Lindsey Ryan. in Nepal
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the circle is \( x^{2} + y^{2} - 12x - 16y + 75 = 0 \).

Solución

To find the equation of the circle that passes through the point \( (3,4) \) and has diameters defined by the lines \( x+y-14=0 \) and \( 2x-y-4=0 \), we can follow these steps: 1. **Find the intersection of the diameters**: The center of the circle will be at the intersection of the two diameters. 2. **Calculate the intersection point**: We will solve the system of equations given by the two lines. 3. **Use the center and the point on the circle to find the radius**: The radius can be calculated as the distance from the center to the point \( (3,4) \). 4. **Formulate the equation of the circle**: Using the center and radius, we can write the equation of the circle. ### Step 1: Find the intersection of the diameters We have the equations: 1. \( x + y - 14 = 0 \) (Equation 1) 2. \( 2x - y - 4 = 0 \) (Equation 2) Let's solve these equations simultaneously. ### Step 2: Solve the system of equations From Equation 1, we can express \( y \) in terms of \( x \): \[ y = 14 - x \] Now, substitute \( y \) into Equation 2: \[ 2x - (14 - x) - 4 = 0 \] \[ 2x - 14 + x - 4 = 0 \] \[ 3x - 18 = 0 \] \[ x = 6 \] Now substitute \( x = 6 \) back into the expression for \( y \): \[ y = 14 - 6 = 8 \] Thus, the center of the circle is at the point \( (6, 8) \). ### Step 3: Calculate the radius Now we need to find the radius, which is the distance from the center \( (6, 8) \) to the point \( (3, 4) \): \[ r = \sqrt{(6 - 3)^2 + (8 - 4)^2} \] \[ r = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 4: Formulate the equation of the circle The general equation of a circle with center \( (h, k) \) and radius \( r \) is given by: \[ (x - h)^2 + (y - k)^2 = r^2 \] Substituting \( h = 6 \), \( k = 8 \), and \( r = 5 \): \[ (x - 6)^2 + (y - 8)^2 = 5^2 \] \[ (x - 6)^2 + (y - 8)^2 = 25 \] Expanding this equation: \[ (x^2 - 12x + 36) + (y^2 - 16y + 64) = 25 \] \[ x^2 + y^2 - 12x - 16y + 100 = 25 \] \[ x^2 + y^2 - 12x - 16y + 75 = 0 \] Thus, the equation of the circle is: \[ \boxed{x^2 + y^2 - 12x - 16y + 75 = 0} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Sure! Here's some additional knowledge for you: Did you know that the equations of the diameters help us find the center of the circle? The intersection of these diameters gives the center. By solving the simultaneous equations \( x + y = 14 \) and \( 2x - y = 4 \), you can easily find the center, which turns out to be \( (8, 6) \). Once you have the center, calculating the radius is just as fun! You can use the distance formula to find the distance from the center to the point \( (3,4) \). Plugging those values into the distance formula gives you the radius. Then you'll use the standard formula for a circle to find the final equation. It's like piecing together a little puzzle!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad