Pregunta
upstudy study bank question image url

If \( \tan x=\frac{3}{4} \), pind \( \sin 2 x, \cos 2 x \) \( 2 x=\frac{2 \tan x}{1+\tan ^{2} x}=\frac{24}{25} \) \( 2 x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x}=\frac{7}{25} \)

Ask by Hardy Boone. in India
Jan 23,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \sin 2x = \frac{24}{25} \) and \( \cos 2x = \frac{7}{25} \).

Solución

Certainly! Let's walk through the problem step by step to find \( \sin 2x \) and \( \cos 2x \) given that \( \tan x = \frac{3}{4} \). ### Given: \[ \tan x = \frac{3}{4} \] ### Formulas to Use: 1. **Double Angle Formulas:** \[ \sin 2x = \frac{2 \tan x}{1 + \tan^2 x} \] \[ \cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x} \] ### Calculations: 1. **Calculate \( \sin 2x \):** \[ \sin 2x = \frac{2 \cdot \frac{3}{4}}{1 + \left(\frac{3}{4}\right)^2} = \frac{\frac{6}{4}}{1 + \frac{9}{16}} = \frac{\frac{6}{4}}{\frac{25}{16}} = \frac{6}{4} \times \frac{16}{25} = \frac{96}{100} = \frac{24}{25} \] 2. **Calculate \( \cos 2x \):** \[ \cos 2x = \frac{1 - \left(\frac{3}{4}\right)^2}{1 + \left(\frac{3}{4}\right)^2} = \frac{1 - \frac{9}{16}}{1 + \frac{9}{16}} = \frac{\frac{7}{16}}{\frac{25}{16}} = \frac{7}{16} \times \frac{16}{25} = \frac{7}{25} \] ### Final Results: \[ \sin 2x = \frac{24}{25} \] \[ \cos 2x = \frac{7}{25} \] ### Summary: Given \( \tan x = \frac{3}{4} \), using the double angle formulas, we've determined that: - \( \sin 2x = \frac{24}{25} \) - \( \cos 2x = \frac{7}{25} \) If you have any further questions or need additional clarification, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s break it down! We know that if \( \tan x = \frac{3}{4} \), we can find \( \sin x \) and \( \cos x \) using the following relationships: 1. From \( \tan x = \frac{\sin x}{\cos x} \), we can let \( \sin x = 3k \) and \( \cos x = 4k \) for some \( k \). Using the Pythagorean theorem: \[ (3k)^2 + (4k)^2 = 1 \Rightarrow 9k^2 + 16k^2 = 1 \Rightarrow 25k^2 = 1 \Rightarrow k= \frac{1}{5} \] Thus, \( \sin x = \frac{3}{5} \) and \( \cos x = \frac{4}{5} \). 2. Now we can calculate \( \sin 2x \) and \( \cos 2x \): \[ \sin 2x = 2 \sin x \cos x = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \] \[ \cos 2x = \cos^2 x - \sin^2 x = \left( \frac{4}{5} \right)^2 - \left( \frac{3}{5} \right)^2 = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \] So, \( \sin 2x = \frac{24}{25} \) and \( \cos 2x = \frac{7}{25} \) are indeed correct!

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad