Pregunta
upstudy study bank question image url

A coin is tossed and a six-sided die numbered 1 through 6 is rolled. Find the probability of tossing a tail and then rolling a number greater than 4 . The probability of tossing a tail and then rolling a number greater than 4 is (Round to three decimal places as needed.)

Ask by Hanson Welch. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability is 0.167.

Solución

For the coin toss, the probability of getting a tail is 1/2. For the six-sided die, numbers greater than 4 are 5 and 6, which gives 2 favorable outcomes out of 6, so the probability is 2/6 = 1/3. Since the two events are independent, multiply the probabilities: (1/2) × (1/3) = 1/6 ≈ 0.167 Thus, the probability of tossing a tail and then rolling a number greater than 4 is 0.167.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve this probability problem, let's break it down into two parts. The probability of tossing a tail (T) with a coin is 1/2, as there are two possible outcomes: heads (H) or tails (T). For the six-sided die, the outcomes greater than 4 are 5 and 6. There are two favorable outcomes out of six total outcomes, giving a probability of 2/6 or 1/3 for rolling a number greater than 4. Now, to find the joint probability of both events happening, we multiply the probabilities of the individual events: P(T and >4) = P(T) * P(>4) = (1/2) * (1/3) = 1/6. To round this to three decimal places, we calculate: 1/6 ≈ 0.167. So, the final probability of tossing a tail and then rolling a number greater than 4 is approximately **0.167**.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad