Let \( f(x)=4 x+5 \) and \( g(x)=2 x-7 \). Find \( (f+g)(x) \), \( (f-g)(x) \), \( (f g)(x) \), and \( \left(\frac{1}{g}\right)(x) \). Give the domain of each. \( (f+g)(x)=\square \) (Simplify your answer.) \( (f-g)(x)=\square \) (Simplify your answer.) \( \left(\frac{f g}{}\right)(x)=\square \) (Simplify your answer.) \( \left(\frac{f}{g}\right)(x)=\square \) (Simplify your answer.) The domain of \( f+g \) is \( \square \). (Type your answer in interval notation.) The domain of \( f-g \) is \( \square \). (Type your answer in interval notation.) The domain of \( f g \) is \( \square \). (Type your answer in interval notation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the various operations of functions \( f(x) \) and \( g(x) \): 1. **Addition**: \[ (f+g)(x) = f(x) + g(x) = (4x + 5) + (2x - 7) = 6x - 2 \] 2. **Subtraction**: \[ (f-g)(x) = f(x) - g(x) = (4x + 5) - (2x - 7) = 2x + 12 \] 3. **Multiplication**: \[ (fg)(x) = f(x) \cdot g(x) = (4x + 5)(2x - 7) = 8x^2 - 28x + 10x - 35 = 8x^2 - 18x - 35 \] 4. **Division**: \[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{4x + 5}{2x - 7} \] Now, let's determine the domains: - The domain of \( f+g \): All real numbers since there are no restrictions. \[ \text{Domain of } f+g: (-\infty, \infty) \] - The domain of \( f-g \): Also all real numbers, as it has no restrictions. \[ \text{Domain of } f-g: (-\infty, \infty) \] - The domain of \( fg \): Again, all real numbers with no restrictions. \[ \text{Domain of } fg: (-\infty, \infty) \] - The domain of \( \frac{f}{g} \): This requires \( g(x) \neq 0 \), hence \( 2x - 7 \neq 0 \) leads to \( x \neq \frac{7}{2} \). \[ \text{Domain of } \frac{f}{g}: (-\infty, \frac{7}{2}) \cup (\frac{7}{2}, \infty) \] Summing everything up: \[ (f+g)(x) = 6x - 2 \] \[ (f-g)(x) = 2x + 12 \] \[ (fg)(x) = 8x^2 - 18x - 35 \] \[ \left(\frac{f}{g}\right)(x) = \frac{4x + 5}{2x - 7} \] \[ \text{Domain of } f+g: (-\infty, \infty) \] \[ \text{Domain of } f-g: (-\infty, \infty) \] \[ \text{Domain of } fg: (-\infty, \infty) \] \[ \text{Domain of } \frac{f}{g}: (-\infty, \frac{7}{2}) \cup (\frac{7}{2}, \infty) \]
