s.15 compare ratesimord problems Nic Dean and Lisa both found deals online for movie tickets. Dean bought 4 movie tickets for \( \$ 3980 \). Lisa bought 6 movie tickets for \( \$ 46.50 \). How much more did Dean pay per ticket than Lisa? \( \$ \) per ticket
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find out how much more Dean paid per ticket than Lisa, we first need to calculate the price per ticket for both Dean and Lisa. For Dean: The total cost for 4 tickets is \( \$ 3980 \). Thus, the price per ticket for Dean is: \[ \text{Price per ticket for Dean} = \frac{3980}{4} = \$ 995 \] For Lisa: The total cost for 6 tickets is \( \$ 46.50 \). Thus, the price per ticket for Lisa is: \[ \text{Price per ticket for Lisa} = \frac{46.50}{6} = \$ 7.75 \] Now, we subtract Lisa's price per ticket from Dean's price per ticket: \[ \text{Difference} = 995 - 7.75 = 987.25 \] So, Dean paid \( \$ 987.25 \) more per ticket than Lisa.
