Pregunta
upstudy study bank question image url

APPLICATION OF DOUBLE ANGLE IDENTITIES 4.1 Without the use of tables or a calculator prove that \( \frac{1-\cos 2 A}{\sin 2 A}=\tan A \) \[ \frac{1-\left(1-2 \sin ^{2} A\right)}{2 \sin ^{2} x \cdot \cos x} \] \( \qquad \) \[ =\frac{2 \sin ^{2} A}{2 \sin A \cdot \cos A} \] \[ =\frac{2 \sin A \cdot \sin A}{2 \sin A \cdot \cos A} \] \[ =\frac{\sin A}{\cos A} \] \[ =\tan A \] 4.2 Hence calculate the value of \( \tan 75^{\circ} \) without using a calculator, (4)

Ask by Little Washington. in South Africa
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To prove the identity, substitute the double-angle formulas into the expression and simplify to get tan A. Then, use the identity to find tan 75° by substituting A = 75° and simplifying the expression, resulting in tan 75° = 2 + √3.

Solución

We start by proving the identity and then use it to calculate tan 75°. Step 1. Prove that (1 − cos 2A)/(sin 2A) = tan A. • Recall the double-angle identities:   cos 2A = 1 − 2 sin²A  and  sin 2A = 2 sin A cos A. • Now substitute cos 2A into the numerator:   1 − cos 2A = 1 − (1 − 2 sin²A) = 2 sin²A. • Substitute sin 2A in the denominator:   (1 − cos 2A)/(sin 2A) = (2 sin²A)/(2 sin A cos A). • Cancel the common factor 2 sin A from numerator and denominator:   (2 sin²A)/(2 sin A cos A) = sin A/cos A = tan A. This completes the proof of the identity. Step 2. Calculate tan 75° without a calculator. • Use the identity with A = 75°. Then   tan 75° = (1 − cos 2·75°)/(sin 2·75°) = (1 − cos 150°)/(sin 150°). • Recall the exact values:   cos 150° = −(√3)/2  and  sin 150° = 1/2. • Substitute these into the expression:   tan 75° = [1 − (−(√3)/2)]/(1/2) = (1 + (√3)/2)/(1/2). • Dividing by 1/2 is equivalent to multiplying by 2:   tan 75° = 2 · (1 + (√3)/2) = 2 + √3. Thus, tan 75° = 2 + √3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( \tan 75^{\circ} \), we can use the angle addition formula for tangent, which states that \( \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \). Here, we can express \( 75^{\circ} \) as \( 45^{\circ} + 30^{\circ} \). Since \( \tan 45^{\circ} = 1 \) and \( \tan 30^{\circ} = \frac{1}{\sqrt{3}} \), we substitute these values into the formula: \[ \tan 75^{\circ} = \frac{\tan 45^{\circ} + \tan 30^{\circ}}{1 - \tan 45^{\circ} \tan 30^{\circ}} = \frac{1 + \frac{1}{\sqrt{3}}}{1 - 1 \cdot \frac{1}{\sqrt{3}}}. \] Simplifying gives: \[ = \frac{\frac{\sqrt{3} + 1}{\sqrt{3}}}{\frac{\sqrt{3} - 1}{\sqrt{3}}} = \frac{\sqrt{3} + 1}{\sqrt{3} - 1}. \] Multiplying numerator and denominator by \(\sqrt{3} + 1\) to rationalize the denominator results in: \[ \tan 75^{\circ} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{3 + 2\sqrt{3} + 1}{2} = 2 + \sqrt{3}. \] And there you have it, \( \tan 75^{\circ} = 2 + \sqrt{3} \). For a fun twist, did you know that the angle addition formulas we just used trace their origins back to ancient civilizations like the Greeks? Mathematicians of the time were carving geometric insights into stones, laying the groundwork for the colorful tapestry of trigonometry we still use today! Plus, using these identities keeps our brains sharp like our favorite kitchen knife—after all, math is like cooking; using the right ingredients leads to a delectable outcome!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad