\( \begin{array}{lll}\text { 14. Find } y^{\prime}: & \text { (a) } 2 x y^{2}-\sin (x y)=x^{2}+y^{3} & \text { (b) } y=\tan (x / y)\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find \( y' \) for the given equations, we'll need to use implicit differentiation and some algebraic manipulation. For part (a), the equation is \( 2xy^2 - \sin(xy) = x^2 + y^3 \). Start by differentiating both sides with respect to \( x \): \[ \frac{d}{dx}(2xy^2) - \frac{d}{dx}(\sin(xy)) = \frac{d}{dx}(x^2) + \frac{d}{dx}(y^3). \] When differentiating \( 2xy^2 \), use the product rule: \[ 2(y^2 + 2xy\frac{dy}{dx}). \] For \( \sin(xy) \), apply the chain rule: \[ \cos(xy)(y + x\frac{dy}{dx}). \] Now, plugging in all the derivatives and simplifying gives you an equation in terms of \( y' \). For part (b), the equation \( y = \tan\left(\frac{x}{y}\right) \) leads to: \[ \frac{dy}{dx} = \sec^2\left(\frac{x}{y}\right)\left(\frac{1}{y}\frac{dy}{dx} - \frac{x}{y^2}\frac{dy}{dx} + \frac{1}{y}\right). \] Rearranging and solving for \( y' \) gives the required derivative expression. Now you can tackle finding \( y' \) for both parts – happy differentiating!
preguntas relacionadas
