Pregunta
upstudy study bank question image url

4. Graph the following features: - Slope \( =-\frac{2}{3} \) - Y-intercept \( =-2 \)

Ask by Rose Mccoy. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the line with a slope of \(-\frac{2}{3}\) and a y-intercept of \(-2\), plot the point \((0, -2)\) and another point using the slope, such as \((3, -4)\), then draw a straight line through these points.

Solución

To graph the line with a slope of \(-\frac{2}{3}\) and a y-intercept of \(-2\), we can follow these steps: 1. **Understand the equation of the line**: The slope-intercept form of a line is given by the equation: \[ y = mx + b \] where \(m\) is the slope and \(b\) is the y-intercept. In this case, we have: - Slope \(m = -\frac{2}{3}\) - Y-intercept \(b = -2\) Therefore, the equation of the line is: \[ y = -\frac{2}{3}x - 2 \] 2. **Identify the y-intercept**: The y-intercept is the point where the line crosses the y-axis. For our equation, when \(x = 0\): \[ y = -2 \] So, the point is \((0, -2)\). 3. **Calculate another point using the slope**: The slope \(-\frac{2}{3}\) means that for every 3 units you move to the right (positive x-direction), you move 2 units down (negative y-direction). Starting from the y-intercept \((0, -2)\): - Move 3 units to the right: \(0 + 3 = 3\) - Move 2 units down: \(-2 - 2 = -4\) Thus, another point on the line is \((3, -4)\). 4. **Plot the points**: You can plot the points \((0, -2)\) and \((3, -4)\) on a graph. 5. **Draw the line**: Connect the two points with a straight line, extending it in both directions. This line will have a downward slope, indicating that as \(x\) increases, \(y\) decreases. If you have graphing software or graph paper, you can use these points to create the graph visually.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To graph the line with a slope of \(-\frac{2}{3}\) and a y-intercept of \(-2\), start by plotting the y-intercept at the point (0, -2) on your graph. From this point, use the slope to find another point. Since the slope is negative, for every 3 units you move to the right (positive direction on the x-axis), move 2 units down (negative direction on the y-axis). This will lead you to the next point at (3, -4). Draw a straight line through these points, extending it in both directions. Now, let’s talk about some common mistakes people make while graphing lines! One of the biggest blunders is miscalculating the slope movement. Remember, the slope \( \frac{rise}{run} \) means if you're moving right (positive x-direction), your 'rise' should be down for a negative slope! Another mistake is forgetting to label your axes or to extend the line; it's important to show the direction the line goes beyond the plotted points to provide clarity. Happy graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad