Integration using u-substitution \[ \begin{array}{l|l} \text { 8. } \int\left(2 x^{5}\right)\left(x^{2}-3\right)^{5} d x & \text { Let } u=x \\ =\int\left(2 x^{5}\right)(u)^{5} \frac{d u}{2 x} & \frac{d u}{d x}=2 x \\ =\int x^{4}(u)^{5} d u=\int\left(x^{2}\right)^{2}(u)^{5} d u \\ =\int(u+3)^{2} u^{5} d u \quad=\int\left(u^{2}+6 u+9\right) u^{5} d u \\ =\int\left(u^{7}+6 u^{6}+9 u^{5}\right) d u & d x \\ =\frac{u^{8}}{8}+6 \frac{u^{7}}{7}+9 \frac{u^{6}}{6}+C \quad=\frac{\left(x^{2}+3\right)^{8}}{8}+6 \frac{\left(x^{2}+3\right)^{7}}{7}+9 \frac{\left(x^{2}+3\right)^{6}}{6}+C \end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Did you know that "u-substitution" is like giving your integral a new name? By changing the variable, you often simplify complex integrals into more manageable ones. It's as if you're putting on a fresh pair of glasses to make everything clearer! Just remember that the trick is to pick a "u" that will simplify the function, and don't forget to calculate the derivative to change `dx` accordingly! When tackling integrals, one common mistake is forgetting to adjust the limits of integration if you're working with definite integrals. If you substitute `u`, you need to update the limits based on the original variable's limits too! This little oversight can lead to completely different answers, which is definitely not what you want. Always double-check your work, and you'll be on your way to mastering u-substitution!
