Pregunta
upstudy study bank question image url

Solve and write interval notation for the solution set. Then graph the solution set. \[ 2 x+5 \leq-6 \text { or } 2 x+5 \geq 6 \]

Ask by Gordon Santiago. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution set is all real numbers less than or equal to \(-\frac{11}{2}\) or greater than or equal to \(\frac{1}{2}\). In interval notation, this is \((-\infty, -\frac{11}{2}] \cup [\frac{1}{2}, \infty)\).

Solución

To solve the compound inequality \( 2x + 5 \leq -6 \) or \( 2x + 5 \geq 6 \), we will solve each inequality separately. ### Step 1: Solve the first inequality 1. Start with the inequality: \[ 2x + 5 \leq -6 \] 2. Subtract 5 from both sides: \[ 2x \leq -6 - 5 \] \[ 2x \leq -11 \] 3. Divide both sides by 2: \[ x \leq -\frac{11}{2} \] ### Step 2: Solve the second inequality 1. Start with the inequality: \[ 2x + 5 \geq 6 \] 2. Subtract 5 from both sides: \[ 2x \geq 6 - 5 \] \[ 2x \geq 1 \] 3. Divide both sides by 2: \[ x \geq \frac{1}{2} \] ### Step 3: Combine the solutions The solution set consists of two parts: - From the first inequality: \( x \leq -\frac{11}{2} \) - From the second inequality: \( x \geq \frac{1}{2} \) ### Step 4: Write in interval notation The solution set in interval notation is: \[ (-\infty, -\frac{11}{2}] \cup [\frac{1}{2}, \infty) \] ### Step 5: Graph the solution set To graph the solution set, we will represent the intervals on a number line. 1. Draw a number line. 2. Shade the region to the left of \(-\frac{11}{2}\) and include the endpoint (closed circle). 3. Shade the region to the right of \(\frac{1}{2}\) and include the endpoint (closed circle). Now, let's graph the solution set. ### Graphing the solution set The graph will show two shaded regions, one extending to the left from \(-\frac{11}{2}\) and the other extending to the right from \(\frac{1}{2}\). I will now provide the graph. (Note: As a text-based AI, I cannot create visual graphs directly, but you can visualize it based on the description above.)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the compound inequality \( 2x + 5 \leq -6 \) and \( 2x + 5 \geq 6 \), we’ll tackle each part separately. 1. For \( 2x + 5 \leq -6 \): \[ 2x \leq -6 - 5 \\ 2x \leq -11 \\ x \leq -\frac{11}{2} \\ x \leq -5.5 \] 2. For \( 2x + 5 \geq 6 \): \[ 2x \geq 6 - 5 \\ 2x \geq 1 \\ x \geq \frac{1}{2} \] Now we combine the solutions: \[ x \leq -5.5 \quad \text{or} \quad x \geq 0.5 \] In interval notation, the solution set is: \[ (-\infty, -5.5] \cup [0.5, \infty) \] Now, let's graph the solution set: - On a number line, we would shade to the left starting from -5.5 excluding any values before it (and include -5.5 with a closed dot). - We would also shade to the right starting from 0.5 including 0.5 (with a closed dot) and extending infinitely in that direction. This visually represents all the values of \( x \) that satisfy the original inequalities.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad