Pregunta
upstudy study bank question image url

\( \begin{array}{ll}\text { (1) } \cos 5 x-\cos 15 x=2 \sin -10 x \sin 5 x & \text { (2) } \frac{\sin 3 x+\sin x}{2}=\sin 2 x \cos x \\ \sin 4 \theta-\sin 2 \theta \\ \text { 3) } 4 \theta+\cos 2 \theta & \tan \theta\end{array} \)

Ask by Savage Frazier. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

All three equations hold true for specific values of \(x\) and \(\theta\), except where \(\sin(5x) = 0\) or \(\sin(2x) = 0\). The third equation requires additional methods to find specific solutions for \(\theta\).

Solución

Let's solve the given equations step by step. ### Equation (1): \[ \cos 5x - \cos 15x = 2 \sin(-10x) \sin 5x \] Using the identity for the difference of cosines: \[ \cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right) \] we can rewrite the left side: - Let \( A = 15x \) and \( B = 5x \): \[ \cos 5x - \cos 15x = -2 \sin\left(\frac{15x + 5x}{2}\right) \sin\left(\frac{15x - 5x}{2}\right) = -2 \sin(10x) \sin(5x) \] Thus, the equation becomes: \[ -2 \sin(10x) \sin(5x) = 2 \sin(-10x) \sin(5x) \] Since \(\sin(-10x) = -\sin(10x)\), we can rewrite the right side: \[ -2 \sin(10x) \sin(5x) = -2 \sin(10x) \sin(5x) \] This equation holds true for all \(x\) where \(\sin(5x) \neq 0\). ### Equation (2): \[ \frac{\sin 3x + \sin x}{2} = \sin 2x \cos x \] Using the sum-to-product identities: \[ \sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right) \] we can rewrite the left side: - Let \( A = 3x \) and \( B = x \): \[ \frac{\sin 3x + \sin x}{2} = \sin(2x) \cos(x) \] Thus, the equation becomes: \[ \sin(2x) \cos(x) = \sin(2x) \cos(x) \] This equation also holds true for all \(x\) where \(\sin(2x) \neq 0\). ### Equation (3): \[ \sin 4\theta - \sin 2\theta = 4\theta + \cos 2\theta \] Using the double angle identity for sine: \[ \sin 4\theta = 2 \sin 2\theta \cos 2\theta \] we can rewrite the left side: \[ 2 \sin 2\theta \cos 2\theta - \sin 2\theta = 4\theta + \cos 2\theta \] Factoring out \(\sin 2\theta\): \[ \sin 2\theta (2 \cos 2\theta - 1) = 4\theta + \cos 2\theta \] This equation is more complex and may require numerical or graphical methods to solve for specific values of \(\theta\). ### Summary: 1. The first two equations hold true for all \(x\) where \(\sin(5x) \neq 0\) and \(\sin(2x) \neq 0\). 2. The third equation requires further analysis or numerical methods to find specific solutions for \(\theta\). If you need further assistance with the third equation or any specific values, please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that trigonometric identities have their roots in ancient civilizations? The Babylonians used base 60, which influenced our degrees, leading to the 360° in a circle. Meanwhile, the Greeks delved deep, with mathematicians like Hipparchus creating tables of chords, setting the foundation for cosine and sine. Their work has transcended centuries, impacting navigation, astronomy, and even architecture! In practical terms, these trigonometric identities are essential for solving real-world problems, especially in engineering and physics. From calculating angles in construction projects to analyzing wave patterns in sound and light, these relationships are crucial. Plus, any aspiring architect or engineer will tell you that knowing how to manipulate these formulas can make or break your design's success. So grab your calculator and get ready to apply these nifty tricks!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad