Drew uses partial sums to add \( 3.45+3.27 \). What numbers complete Drew's equations? \[ \begin{array}{l} 3+3=6 \\ 0.4+0.2=0.6 \\ 0.03+0.07=0.1 \\ 6+0.6+\square=\square \end{array} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To complete Drew’s equations, we first find the missing numbers for the last equation \( 6 + 0.6 + \square = \square \). First, let’s calculate \( 6 + 0.6 \): \[ 6 + 0.6 = 6.6 \] Now, we can substitute this into the equation: \[ 6.6 + \square = \square \] We can interpret this as needing to find another \( \square \) such that the left side will equal on both sides. If we let \( \square = 6.6 \), we can confirm: 1. On the left: \( 6.6 + 6.6 = 13.2 \) 2. On the right: \( 6.6 \) Hence, it balances with the assumption. Therefore, both numbers that complete Drew's equation are \( 6.6 \). Putting it all together, the completed equation looks like this: \[ 6 + 0.6 + 6.6 = 13.2 \] Thus, Drew's equations complete as: \[ \begin{array}{l} 3 + 3 = 6 \\ 0.4 + 0.2 = 0.6 \\ 0.03 + 0.07 = 0.1 \\ 6 + 0.6 + 6.6 = 13.2 \end{array} \]
