3. Inversión de matrices Problema: Encuentra la matriz inversa de: \( B=\left(\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1\end{array}\right) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
Para encontrar la matriz inversa de \( B \), podemos utilizar el método de reducción por filas. La matriz aumentada sería \( (B | I) \), donde \( I \) es la matriz identidad de 3x3. Realizando operaciones elementales, transformamos \( B \) en \( I \) y la parte de la derecha en \( B^{-1} \). Finalmente, la inversa resultante de la matriz \( B \) es: \[ B^{-1}=\left(\begin{array}{lll}1 & -2 & 5 \\ 0 & 1 & -4 \\ 0 & 0 & 1\end{array}\right) \] ¡Y voilà! Hemos encontrado la matriz inversa. Para verificar que hemos hecho el trabajo correctamente, multiplicamos \( B \) por \( B^{-1} \). Si el resultado es la matriz identidad, ¡sabrás que tu calculo es correcto! Recuerda, la inversa de una matriz puede ser útil en muchas áreas, como en sistemas de ecuaciones o en transformaciones lineales.
